CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 555

_id ecaade2017_172
id ecaade2017_172
authors Brand?o, Filipe, Paio, Alexandra and Whitelaw, Christopher
year 2017
title Mapping Mass Customization
doi https://doi.org/10.52842/conf.ecaade.2017.2.417
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 417-424
summary Mass customization (MC) and personal fabrication (PF) are current relevant topics in architecture offices practice and schools design research. Architects are adopting information based design and production techniques as a response to architectural century challenges. However, is not clear how various authors used and transformed the concept in practice, research and industry after three decades since the MC term was introduced by Davis (1987). Therefore, is essential to map the most relevant works in the field in relation to production and design control. The paper presents some of the results of the ongoing study through an evolving map that aims to visualize relationships, layering complexity and revealing difference.
keywords Mass Customization; Personal Fabrication; Housing; Map
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia17_190
id acadia17_190
authors Coleman, James; Cole, Shannon
year 2017
title By Any Means Necessary: Digitally Fabricating Architecture at Scale
doi https://doi.org/10.52842/conf.acadia.2017.190
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 190-201
summary Architectural manufacturing is a balancing act between production facility and a custom fabrication shop. Each project Zahner takes on is different from the last, and not likely to repeat. This means that workflows are designed and deployed for each project individually. We present Flash Manufacturing, a fabrication methodology we employ in the production of architectural elements for cutting-edge and computationally sophisticated buildings. By remixing manufacturing techniques and production spaces we are able to meet the novel challenges posed by fabricating and assembling hundreds of thousands of unique parts. We discuss methods for producing vastly different project types and highlight two building case studies: the Cornell Tech Bloomberg Center and the Petersen Automotive Museum. With this work, we demonstrate how design creativity is no longer at odds with reliable and cost-effective building practices. Zahner has produced hundreds of seminal buildings working with architects such as: Gehry Partners, Zaha Hadid, m0rphosis, Herzog & de Meuron, OMA, Steven Holl Architects, Studio Daniel Libeskind, Rafael Moneo, DS+R, Foster + Partners, Gensler, KPF, SANAA and many more. This paper disrupts conventional discourse surrounding manufacturing/construction methods by discussing the realities of mass customization—how glossy architectural products are forged through ad hoc inventive engineering and risk tolerance.
keywords material and construction; fabrication; CAM; prototyping; construction; robotics
series ACADIA
email
last changed 2022/06/07 07:56

_id acadia17_18
id acadia17_18
authors Abdel-Rahman, Amira; Michalatos, Panagiotis
year 2017
title Magnetic Morphing
doi https://doi.org/10.52842/conf.acadia.2017.018
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 18-27
summary In an attempt to design shape-morphing multifunctional objects, this thesis uses programmable matter to design self-organizing multi-agent systems capable of morphing from one shape into another. The research looks at various precedents of self-assembly and modular robotics to design and prototype passive agents that could be cheaply mass-produced. Intelligence will be embedded into these agents on a material level, designing different local interactions to perform different global goals. The initial exploratory study looks at various examples from nature like plankton and molecules. Magnetic actuation is chosen as the external actuation force between agents. The research uses simultaneous digital and physical investigations to understand and design the interactions between agents. The project offers a systemic investigation of the effect of shape, interparticle forces, and surface friction on the packing and reconfiguration of granular systems. The ability to change the system state from a gaseous, liquid, then solid state offers new possibilities in the field of material computation, where one can design a "material" and change its properties on demand.
keywords material and construction; construction/robotics; smart materials; smart assembly/construction; simulation & optimization
series ACADIA
email
last changed 2022/06/07 07:52

_id acadia17_62
id acadia17_62
authors Al-Assaf, Nancy S.; Clayton, Mark J.
year 2017
title Representing the Aesthetics of Richard Meier’s Houses Using Building Information Modeling
doi https://doi.org/10.52842/conf.acadia.2017.062
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 62-71
summary Beyond its widespread use for representing technical aspects and matters of building and construction science, Building information modeling (BIM) can be used to represent architectural relationships and rules drawn from aesthetic theory. This research suggests that BIM provides not only vocabulary but also syntactical tools that can be used to capture an architectural language. In a case study using Richard Meier’s language for single-family detached houses, a BIM template has been devised to represent the aesthetic concepts and relations therein. The template employs parameterized conceptual mass objects, syntactical rules, and a library of architectonic elements, such as walls, roofs, columns, windows, doors, and railings. It constrains any design produced using the template to a grammatically consistent expression or style. The template has been used as the starting point for modeling the Smith House, the Douglas House, and others created by the authors, demonstrating that the aesthetic template is general to many variations. Designing with the template to produce a unique but conforming design further illustrates the generality and expressiveness of the language. Having made the formal language explicit, in terms of syntactical rules and vocabulary, it becomes easier to vary the formal grammar and concrete vocabulary to produce variant languages and styles. Accordingly, this approach is not limited to a specific style, such as Richard Meier's. Future research can be conducted to demonstrate how designing with BIM can support stylistic change. Adoption of this approach in practice could improve the consistency of architectural designs and their coherence to defined styles, potentially increasing the general level of aesthetic expression in our built environment.
keywords design methods; information processing; BIM; education
series ACADIA
email
last changed 2022/06/07 07:54

_id acadia17_202
id acadia17_202
authors Cupkova, Dana; Promoppatum, Patcharapit
year 2017
title Modulating Thermal Mass Behavior Through Surface Figuration
doi https://doi.org/10.52842/conf.acadia.2017.202
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 202-211
summary This research builds upon a previous body of work focused on the relationship between surface geometry and heat transfer coefficients in thermal mass passive systems. It argues for the design of passive systems with higher fidelity to multivariable space between performance and perception. Rooted in the combination of form and matter, the intention is to instrumentalize design principles for the choreography of thermal gradients between buildings and their environment from experiential, spatial and topological perspectives (Figure 1). Our work is built upon the premise that complex geometries can be used to improve both the aesthetic and thermodynamic performance of passive building systems (Cupkova and Azel 2015) by actuating thermal performance through geometric parameters primarily due to convection. Currently, the engineering-oriented approach to the design of thermal mass relies on averaged thermal calculations (Holman 2002), which do not adequately describe the nuanced differences that can be produced by complex three-dimensional geometries of passive thermal mass systems. Using a combination of computational fluid dynamic simulations with physically measured data, we investigate the relationship of heat transfer coefficients related to parameters of surface geometry. Our measured results suggest that we can deliberately and significantly delay heat absorption re-radiation purely by changing the geometric surface pattern over the same thermal mass. The goal of this work is to offer designers a more robust rule set for understanding approximate thermal lag behaviors of complex geometric systems, with a focus on the design of geometric properties rather than complex thermal calculations.
keywords design methods; information processing; physics; smart materials
series ACADIA
email
last changed 2022/06/07 07:56

_id ijac201715303
id ijac201715303
authors Griz, Cristiana; Luiz Amorim, Leticia Mendes, Maria Augusta Holanda and Thais Carvalho
year 2017
title A Customization Grammar: Describing the customization process of apartment design
source International Journal of Architectural Computing vol. 15 - no. 3, 203-214
summary This article introduces the concept of Customization Grammar, an analytical shape grammar that describes the alterations introduced by homeowners to high-standard apartments before occupation. This is viewed as a contemporary phenomenon that reveals the incompatibility between social demands and housing units offered by the current real estate market in Recife, Brazil. It is expected that the proposed grammar could support mass customization design procedures and able to generate suitable housing units to current and future lifestyles.
keywords Shape grammar, apartment customization design, contemporary lifestyles
series journal
email
last changed 2019/08/07 14:03

_id ecaade2017_053
id ecaade2017_053
authors Gül, Leman Figen
year 2017
title Studying Architectural Massing Strategies in Co-design - Mobile Augmented Reality Tool versus 3D Virtual World
doi https://doi.org/10.52842/conf.ecaade.2017.2.703
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 703-710
summary Researchers attempt to offer new design tools and technologies to support design process facilitating alternative visualization and representation techniques. This paper describes a comparison study that took place in the Department of Architecture, at the Istanbul Technical University between 2016-2017. We compare when architects designed mass volumes of buildings in an marker-based mobile Augmented Reality (AR) application with that of when they used a collaborative 3D Virtual World. The massing strategy in the AR environment was an additive approach that is to collaboratively design the small parts to make the whole. Alignment and arrangement of the parts were not the main concerns of the designers in AR, instead the functional development of the design proposal, bodily engagements with the design representation, framing and re-framing of the given context and parameters become the discussion topics.
keywords Augmented reality, virtual world, massing strategies; protocol analysis
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2017_077
id ecaade2017_077
authors Mekawy, Mohammed and Petzold, Frank
year 2017
title Exhaustive Exploration of Modular Design Options to Inform Decision Making
doi https://doi.org/10.52842/conf.ecaade.2017.2.107
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 107-114
summary Europe is facing an increasing demand for new construction, which is pushing the industry away from traditional construction technology towards prefabrication and Mass-Customization. However, prefabrication-based construction requires a more efficient, better informed decision making process due to the increased difficulty of on-site variations. Furthermore, the lack of means to navigate the whole spectrum of solutions for a given design problem using traditional tools, and the absence of the manufacturer's input in the early phases of the project can present significant challenges for the efficiency of the design and construction process. As a way to face these challenges, this paper presents an approach, realized as an Autodesk Dynamo-for-Revit package called Box Module Generator (BMG), which enables the exhaustive generation of configurations for a given building based on a construction scheme that utilizes Box Prefabricates. The output can be sorted, dissected and explored by users in various ways and the building geometry can be generated automatically in a Building Information Modeling environment. This makes it possible for the projects' stakeholders to browse thousands of potential design alternatives, which would otherwise be very hard to explore manually, or using traditional parametric modelers.
keywords Prefabrication; Box Prefabricates; Design Tools; Design Automation; Building Information Modeling; Dynamo
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia17_456
id acadia17_456
authors Page, Mitchell
year 2017
title A Robotic Fabrication Methodology for Dovetail and Finger Jointing: An Accessible & Bespoke Digital Fabrication Process for Robotically-Milled Dovetail & Finger Joints
doi https://doi.org/10.52842/conf.acadia.2017.456
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 456- 463
summary Since the advent of industrialized processes in modern construction industries, the development of and relationship between computer-aided tools of design and computer-controlled tools of fabrication has steadily yielded new and innovative construction methodologies. Whilst industry has adopted many of these innovations for use by highly efficient machines and flexible processes, their operation is often highly dependent on industrial scales of production, and thus often inaccessible for small-scale, bespoke and affordable application. The prototype integrated joint milling methodology, case study and open-source software plugin ‘Dove’ presented in this paper, explores the efficacy of algorithmic processes in dynamically generating complex tooling paths and machine code for fabrication of bespoke dovetail and finger joints on a 6-axis industrial robot. The versatility, speed and precision of 6-axis robotic milling, allows us to liberate the efficiency, integrity and aesthetic of the dovetail and finger joint types from traditional application, and apply them to new architectures involving mass-customisation, complex form, and diverse materialities. In the development of full-immersion milling toolpaths and back-face filleting techniques that drastically reduce cutting times, tool path complexity and material waste, this study seeks to build upon past and current research by proposing a comparatively simple, efficient and more intuitive approach to robotically-fabricated integrated jointing for application at a variety of scales.
keywords material and construction; fabrication; construction/robotics; digital craft; manual craft
series ACADIA
email
last changed 2022/06/07 07:58

_id ecaade2017_ws-masscustimization
id ecaade2017_ws-masscustimization
authors Tepavčević, Bojan
year 2017
title Wall.4.all - Mass customization of 3d wall design in online environment
doi https://doi.org/10.52842/conf.ecaade.2017.1.053
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 53-54
keywords Mass Customization; Web3D; Parametric design; Digital Fabrication
series eCAADe
email
last changed 2022/06/07 07:58

_id sigradi2017_005
id sigradi2017_005
authors Vargas Cubillos, Julián; Gilfranco Medeiros Alves
year 2017
title El proceso proyectivo colaborativo en BIM: Aproximaciones a partir de la semiótica de C. S. Peirce [The collaborative projective process in BIM: Approaches from the semiotics of C. S. Peirce]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.39-44
summary This paper studies the process of conception in BIM architecture, using concepts of Peircian semiotics, in order to apply it in the design oriented to the resilience. There are three ways of designing in Revit Architecture software: (i) the conceptual mass, which demonstrates an abductive-iconic type of reasoning and a stereotomic process. (ii) Object-based modeling, which demonstrates a deductive/inductive-symbolic and a tectonic procedure and (iii) collaborative modeling, which manages to initiate a parallel process between different professionals and the community. These processes are understood in a semiotic relationship, in which are present signs and reasoning of different hierarchies.
keywords Process; BIM; Semiotics; Resilience; Collaborative
series SIGRADI
email
last changed 2021/03/28 19:59

_id acadia17_650
id acadia17_650
authors Zayas, Luisel; Brugmann, Dustin; Clifford, Brandon; McGee, Wes; Durham, James
year 2017
title Quarra Cairn: Incremental Stability Through Shifting and Removal of Mass
doi https://doi.org/10.52842/conf.acadia.2017.650
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 650- 659
summary Recent advances in integrating physical logic into computation strategies have brought the mastermakers mentality back to the forefront of the digital era, yet a long-standing problem persists: ongoing efforts to develop reciprocal structures with gravitational forces tend to generate forms that are unable to be constructed without massive falsework. This paper explores the potential to intelligently remove material from the interior of a column drum in order to produce a leaning column that could contribute to solving this age-old problem. The paper describes the computation and fabrication logic required, then demonstrates a full-scale prototype and some of the discoveries that emerged as a result of the computation process.
keywords material and construction; fabrication
series ACADIA
email
last changed 2022/06/07 07:57

_id ecaade2017_173
id ecaade2017_173
authors Buš, Peter, Hess, Tanja, Treyer, Lukas, Knecht, Katja and Lu, Hangxin
year 2017
title On-site participation linking idea sketches and information technologies - User-driven Customised Environments
doi https://doi.org/10.52842/conf.ecaade.2017.1.543
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 543-550
summary The paper introduces the methodology related to the topic of citizen-driven urban design and revises the idea of on-site participation of end-users, which could prospectively lead to customisation of architectural and urban space in a full-scale. The research in the first phase addresses the engagement of information technologies used for idea sketching in participatory design workshop related to local urban issues in the city of Chur in Switzerland by means of the Skity tool, the sketching on-line platform running on all devices. Skity allows user, which can be individual citizens or a community, to sketch, build, and adapt their ideas for the improvement of an urban locality. The participant is the expert of the locality because he or she lives in this place every day. The content of this paper is focused on the participatory design research project conducted as a study at the ETH Zürich and the Hochschule für Technik und Wirtschaft HTW in Chur in collaboration with Future Cities Laboratory in Singapore, mainly concentrated on the first step of the methodological approach introduced here.
keywords responsive cities; urban mass-customisation; idea sketching; ideation; on-site participation; citizen design science
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2017_122
id caadria2017_122
authors Chen, Zi-Ru and Liang, Kai-Hsiang
year 2017
title Application of Digital Fabrication Techniques to Reconstruct Ancient Machinery - A Case-study of Su Song's Water-powered Astronomical Clock Tower
doi https://doi.org/10.52842/conf.caadria.2017.777
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 777-786
summary The restoration of ancient machinery involves a number of aspects, including manufacturing procedure, materials, and scales. Portions that cannot be confirmed should be regarded as variable parameters of the reconstructed design, and therefore, there is no single result. The goal of reconstruction is to establish a prototype of ancient machinery with its mechanical engineering techniques and crafts. The problem of this study is how digital fabrication tools used in architectural design can be applied to the reconstruction of ancient machinery with the water-powered armillary and celestial tower as an example. The objective was to synthesize results that comply with historical records in a systematic, modularized, and parameterized manner and consider the feasibility of using modern digital fabrication and materials. With the procedure, we can reduce the difficulty of ancient machinery reconstruction and provide a reference for the reconstruction designs of ancient mechanical technology and crafts, and mass production made of different materials and scales in the future.
keywords Digital fabrication; Ancient mechanisms recovery; Innovative design
series CAADRIA
email
last changed 2022/06/07 07:54

_id cf2017_492
id cf2017_492
authors Kocabay, Serkan; Alaçam, Sema
year 2017
title Algorithm Driven Design: Comparison of Single-Objective and Multi-Objective Genetic Algorithms in the Context of Housing Design
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 492-508.
summary This paper aims to present a dynamic multi objective genetic algorithm (MOGA) framework for the purpose of generating 3D mass models in the context of housing design. The proposed MOGA framework contains static and dynamic modules such as regulations, environmental condition analysis as static, behavioral models, designer-specified goals, domain-specific goals based on building types as dynamic modules. Moreover comparison of two algorithmic approaches, implementation of a single and multiple objective genetic algorithms are compared in terms of variety and usability of the generated design solutions, fitness approximation performances and the speed of the algorithms (running time). In the scope of this study, the potentials andlimitations of the proposed MOGA framework in 3D form generation, its advantages over single objective genetic algorithm are discussed, conducted with a case study.
keywords Multi-objective, Genetic Algorithm, Housing Design, Mass-model
series CAAD Futures
email
last changed 2017/12/01 14:38

_id caadria2017_004
id caadria2017_004
authors Lo, Tian Tian, Schnabel, Marc Aurel and Moleta, Tane J.
year 2017
title Gamification for User-Oriented Housing Design - A Theoretical Review
doi https://doi.org/10.52842/conf.caadria.2017.063
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 63-72
summary Fluctuating economies and changing family demographics have increased the complexity in meeting the spatial needs for contemporary housing. Digital systems that allow flexibility are growing in demand but its rate of development is not catching up with the rapid changes. This paper explores how digital interventions can limit or help the process of collaborative design in high-density mass housing context. One key factor in user-oriented design system is participation. Many researchers have looked into system usability, design simplification and realistic visualisation to provide an immersive experience for users to engage the design. This paper argues how gamification acts as a form of decision support within a bigger framework model for a user-oriented digital design system. Using three levels of rules: constitutive rules, operational rules and implicit rules, the aim is for users to generate a housing design outcome not only for themselves but also collaboratively with other users through gamification.
keywords gamification; user-oriented; digital intervention; decision support; mass housing
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2017_046
id caadria2017_046
authors Puusepp, Renee, L?oke, Taavi and Kivi, Kaiko
year 2017
title Enabling Customer Choice in Housing - Mass Customisation Solution for Prefabricated House Manufacturers
doi https://doi.org/10.52842/conf.caadria.2017.251
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 251-260
summary This paper presents a live and tested solution that enables home buyers to choose and customise their future homes in a web browser. It allows future owners and residents to configure and visualise their home in 3D but also keep it affordable by displaying the construction costs back to users in real-time. The proposed solution is analysed in the context of current housing market, excising web and BIM technologies and compared to currently available solutions. Additionally, we have been tracking visitor behaviour by using web analytics and can draw some conclusions about its performance.
keywords mass customisation; housing; configurators; combinatorics; web technologies
series CAADRIA
email
last changed 2022/06/07 08:00

_id sigradi2017_043
id sigradi2017_043
authors Griz, Cristiana; Natália Queiroz, Carlos Nome
year 2017
title Edificaçăo Modular: Estudo de caso e protótipo de um sistema construtivo de código aberto utilizando prototipagem rápida [Modular Building: Case study and prototype of an open source modular system using rapid prototyping]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.293-300
summary This paper presents the research development for a base structural module for the Casa Nordeste project. Casa Nordeste is a compact housing experiment that will participate in the Solar Decathlon Latin America competition. It consists of a modular building that houses living, cooking, and sanitizing space. Developments presented are based on digital design and fabrication principles and processes, through algorithms that allow its customization. In this sense, discussions begin with a brief theoretical discussion about the concepts that underline the project: evolutionary housing; digital technologies that improve design and construction; open source construction and generative design systems. The paper finalizes by presenting and discussing developments of three different design aspects of the structural module: (a) geometry of the frames, (b) its modulation, and (c) fittings and joining mechanisms.
keywords Digital fabrication; Rapid prototyping; Visual programming; Compact housing.
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2017_212
id ecaade2017_212
authors Kwiecinski, Krystian, Markusiewicz, Jacek and Pasternak, Agata
year 2017
title Participatory Design Supported with Design System and Augmented Reality
doi https://doi.org/10.52842/conf.ecaade.2017.2.745
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 745-754
summary In this paper we present our research which is focused on developing and testing a method supporting participatory design process with a use of a design system and Augmented Reality interactive interface. We propose a concept of participatory design where participants can directly interact with architectural knowledge encapsulated in the design system. The proposed concept of participatory design supported with a design system was tested during a workshop conducted in Kaunas, Lithuania. The dedicated design system was created in order to minimize physical interaction between the architect and the users while allowing for customization of design solutions by participants. The design system and the participatory design process were linked with the use of a digital communication interface. The paper is concluded with a critical view on the process. The conclusions are based substantially on the results of a survey prepared by the authors and conducted among workshop's participant.
keywords Augmented Reality; participatory design; design interface; parametric design
series eCAADe
type normal paper
email
last changed 2022/06/07 07:56

_id ecaade2017_054
id ecaade2017_054
authors Abramovic, Vasilija, Glynn, Ruairi and Achten, Henri
year 2017
title ROAMNITURE - Multi-Stable Soft Robotic Structures
doi https://doi.org/10.52842/conf.ecaade.2017.1.327
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 327-336
summary The rise in robotics is not only changing fabrication research in architecture but increasingly providing opportunities for animating the materiality of architecture, offering responsive, performative and adaptive design possibilities for the built environment. A fundamental challenge with robotics is its suitability to safe, and comfortable use in proximity to the human body. Here we present the preliminary results of the Roamniture Project, a hybrid approach to developing kinetic architecture based on a combination of rigid and soft body dynamics.
keywords Kinetic Architecture; Soft Robotics; Soft Architecture; Furniture
series eCAADe
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_896775 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002