CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 113

_id acadia17_382
id acadia17_382
authors Melenbrink, Nathan; Kassabian, Paul; Menges, Achim; Werfel, Justin
year 2017
title Towards Force-aware Robot Collectives for On-site Construction
doi https://doi.org/10.52842/conf.acadia.2017.382
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 382- 391
summary Due to the irregular and variable environments in which most construction projects take place, the topic of on-site automation has previously been largely neglected in favor of off-site prefabrication. While prefabrication has certain obvious economic and schedule benefits, a number of potential applications would benefit from a fully autonomous robotic construction system capable of building without human supervision or intervention; for example, building in remote environments, or building structures whose form changes over time. Previous work using a swarm approach to robotic assembly generally neglected to consider forces acting on the structure, which is necessary to guarantee against failure during construction. In this paper we report on key findings for how distributed climbing robots can use local force measurements to assess aspects of global structural state. We then chart out a broader trajectory for the affordances of distributed on-site construction in the built environment and position our contributions within this research agenda. The principles explored in simulation are demonstrated in hardware, including solutions for force-sensing as well as a climbing robot.
keywords material and construction; physics; construction/robotics; simulation & optimization
series ACADIA
email
last changed 2022/06/07 07:58

_id ecaade2017_124
id ecaade2017_124
authors Pantazis, Evangelos and Gerber, David
year 2017
title Emergent order through swarm fluctuations - A framework for exploring self-organizing structures using swarm robotics
doi https://doi.org/10.52842/conf.ecaade.2017.1.075
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 75-84
summary In modern architecture, construction processes are based on top down planning, yet in nature but also in vernacular architecture, the shape of shelters/nests is the result of evolutionary material processes which takes place without any global coordination or plan. This work presents a framework for exploring how self-organizing structures can be achieved in a bottom up fashion by implementing a swarm of simple robots(bristle bots). The robots are used as a hardware platform and operate in a modular 2D arena filled with differently shaped passive building blocks. The robots push around blocks and their behaviour can be programmed mechanically by changing the geometry of their body. Through physical experimentation and video analysis the relationships between the properties of the emergent patterns (size, temporal stability) and the geometry of the robot/parts are studied. This work couples a set of agent based design tools with a robust robotic system and a set of analysis tools for generating and actualising emergent 2D structures.
keywords Multi Agent Systems; Generative Design; Swarm Robotics; Self-organizing patterns
series eCAADe
email
last changed 2022/06/07 08:00

_id acadia17_18
id acadia17_18
authors Abdel-Rahman, Amira; Michalatos, Panagiotis
year 2017
title Magnetic Morphing
doi https://doi.org/10.52842/conf.acadia.2017.018
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 18-27
summary In an attempt to design shape-morphing multifunctional objects, this thesis uses programmable matter to design self-organizing multi-agent systems capable of morphing from one shape into another. The research looks at various precedents of self-assembly and modular robotics to design and prototype passive agents that could be cheaply mass-produced. Intelligence will be embedded into these agents on a material level, designing different local interactions to perform different global goals. The initial exploratory study looks at various examples from nature like plankton and molecules. Magnetic actuation is chosen as the external actuation force between agents. The research uses simultaneous digital and physical investigations to understand and design the interactions between agents. The project offers a systemic investigation of the effect of shape, interparticle forces, and surface friction on the packing and reconfiguration of granular systems. The ability to change the system state from a gaseous, liquid, then solid state offers new possibilities in the field of material computation, where one can design a "material" and change its properties on demand.
keywords material and construction; construction/robotics; smart materials; smart assembly/construction; simulation & optimization
series ACADIA
email
last changed 2022/06/07 07:52

_id ecaade2017_021
id ecaade2017_021
authors Agirbas, Asli
year 2017
title The Use of Simulation for Creating Folding Structures - A Teaching Model
doi https://doi.org/10.52842/conf.ecaade.2017.1.325
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 325-332
summary In architectural education, the demand for creating forms with a non-Euclidean geometry, which can only be achieved by using the computer-aided design tools, is increasing. The teaching of this subject is a great challenge for both students and instructors, because of the intensive nature of architecture undergraduate programs. Therefore, for the creation of those forms with a non-Euclidean geometry, experimental work was carried out in an elective course based on the learning visual programming language. The creation of folding structures with form-finding by simulation was chosen as the subject of the design production which would be done as part of the content of the course. In this particular course, it was intended that all stages should be experienced, from the modeling in the virtual environment to the digital fabrication. Hence, in their early years of architectural education, the students were able to learn versatile thinking by experiencing, simultaneously, the use of simulation in the environment of visual programming language, the forming space by using folding structures, the material-based thinking and the creation of their designs suitable to the digital fabrication.
keywords Folding Structures; CAAD; Simulation; Form-finding; Architectural Education
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia17_38
id acadia17_38
authors Ahlquist, Sean; McGee, Wes; Sharmin, Shahida
year 2017
title PneumaKnit: Actuated Architectures Through Wale- and Course-Wise Tubular Knit-Constrained Pneumatic Systems
doi https://doi.org/10.52842/conf.acadia.2017.038
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 38-51
summary This research explores the development of seamless pneumatically actuated systems whose motion is controlled by the combination of differentially knitted textiles and standardized thin-walled silicone tubing. This work proposes a fundamental material strategy that addresses challenges ranging from soft robotics to pneumatic architecture. Research in soft robotics seeks to achieve complex motions through non-mechanical monolithic systems, comprised of highly articulated shapes molded with a combination of elastic and inelastic materials. Inflatables in architecture focus largely on the active structuring of static forms, as facade systems or as structured envelopes. An emerging use of pneumatic architecture proposes morphable, adaptive systems accomplished through differentiated mechanically interconnected components. In the research described in this paper, a wide array of capabilities in motion and geometric articulation are accomplished through the design of knitted sleeves that generate a series of actuated “elbows.” As opposed to molding silicone bladders, differentiation in motion is generated through the more facile ability of changing stitch structure, and shaping of the knitted textile sleeve, which constrains the standard silicone tubing. The relationship between knit differentiation, pneumatic pressure, and the resultant motion profile is studied initially with individual actuators, and ultimately in propositions for larger seamless assemblies. As opposed to a cellular study of individual components, this research proposes structures with multi-scalar articulation, from fiber and stitch to overall form, composed into seamless, massively deformable architectures.
keywords material and construction; fabrication; construction/robotics
series ACADIA
email
last changed 2022/06/07 07:54

_id acadia17_52
id acadia17_52
authors Ajlouni, Rima
year 2017
title Simulation of Sound Diffusion Patterns of Fractal-Based Surface Profiles
doi https://doi.org/10.52842/conf.acadia.2017.052
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 52-61
summary Acoustical design is one of the most challenging aspects of architecture. A complex system of competing influences (e.g., space geometry, size, proportion, material properties, surface detail, etc.) contribute to shaping the quality of the auditory experience. In particular, architectural surfaces affect the way that sound reflections propagate through space. By diffusing the reflected sound energy, surface designs can promote a more homogeneous auditory atmosphere by mitigating sharp and focused reflections. One of the challenges with designing an effective diffuser is the need to respond to a wide band of sound wavelengths, which requires the surface profile to precisely encode a range of detail sizes, depths and angles. Most of the available sound diffusers are designed to respond to a narrow band of frequencies. In this context, fractal-based surface designs can provide a unique opportunity for mitigating such limitations. A key principle of fractal geometry is its multilevel hierarchical order, which enables the same pattern to occur at different scales. This characteristic makes it a potential candidate for diffusing a wider band of sound wavelengths. However, predicting the reflection patterns of complicated fractal-based surface designs can be challenging using available acoustical software. These tools are often costly, complicated and are not designed for predicting early sound propagation paths. This research argues that writing customized algorithms provides a valuable, free and efficient alternative for addressing targeted acoustical design problems. The paper presents a methodology for designing and testing a customized algorithm for predicting sound diffusion patterns of fractal-based surfaces. Both quantitative and qualitative approaches were used to develop the code and evaluate the results.
keywords design methods; information processing; simulation & optimization; data visualization
series ACADIA
email
last changed 2022/06/07 07:54

_id cf2017_443
id cf2017_443
authors Araya, Sergio; Veliz, Felipe; Quest, Sylvana; Truffello, Ricardo
year 2017
title Igneous Tectonics: Turning disaster into resource through digital fabrication
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 443-456.
summary This investigation aims to develop and establish digital fabrication and design techniques and protocols to process volcanic materials that have caused significant environmental and social damage, using them to reconstruct new and improved structures to replace those destroyed, palliating the negative effects of volcanic eruptions and contributing a new economic resource to affected communities. The study recovers underused material and explore its qualities, recovering lost stonemasonry skills though advanced CNC and robotic manufacturing.
keywords Robotic manufacturing, parametric design, digital fabrication, material research, CNC stonemasonry.
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ecaade2017_148
id ecaade2017_148
authors Baseta, Efilena, Sollazzo, Aldo, Civetti, Laura, Velasco, Dolores and Garcia-Amorós, Jaume
year 2017
title Photoreactive wearable: A computer generated garment with embedded material knowledge - A computer generated garment with embedded material knowledge
doi https://doi.org/10.52842/conf.ecaade.2017.2.317
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 317-326
summary Driven by technology, this multidisciplinary research focuses on the implementation of a photomechanical material into a reactive wearable that aims to protect the body from the ultraviolet radiation deriving from the sun. In this framework, the wearable becomes an active, supplemental skin that not only protects the human body but also augments its functions, such as movement and respiration. The embedded knowledge enables the smart material to sense and exchange data with the environment in order to passively actuate a system that regulates the relation between the body and its surroundings in an attempt to maintain equilibrium. The design strategy is defined by 4 sequential steps: a) The definition of the technical problem, b) the analysis of the human body, c) the design of the reactive material system, as well as d) the digital simulations and the digital fabrication of the system. The aforementioned design strategies allow for accuracy as well as high performance optimization and predictability in such complex design tasks, enabling the creation of customized products, designed for individuals.
keywords smart materials; wearable technology; data driven design; reactive garment; digital fabrication; performance simulations
series eCAADe
email
last changed 2022/06/07 07:54

_id ijac202018203
id ijac202018203
authors Beattie , Hamish; Daniel Brown and Sara Kindon
year 2020
title Solidarity through difference: Speculative participatory serious urban gaming (SPS-UG)
source International Journal of Architectural Computing vol. 18 - no. 2, 141-154
summary This article discusses the methodology and results of the Maslow’s Palace workshops project, which engages with current debates surrounding the democratisation of digital urban design technology and stakeholder decision making, through the implementation of a speculative oriented approach to serious gaming. The research explores how serious games might be used to help marginalised communities consider past, future and present community experiences, reconcile dissimilar assumptions, generate social capital building and design responses and prime participants for further long-term design engagement processes through a new approach called Speculative Participatory Serious Urban Gaming. Empirical material for this research was gathered from a range of case study workshops prepared with three landfill-based communities and external partners throughout 2017. Results show the approach helped participants develop shared norms, values and collective understandings of sensitive topics and develop ideas for future action through ‘collective tinkering.
keywords Participatory design, urban design, social capital, serious games
series journal
email
last changed 2020/11/02 13:34

_id caadria2019_388
id caadria2019_388
authors Beattie, Hamish, Brown, Daniel and Kindon, Sara
year 2019
title Functional Fiction to Collective Action - Values-Based Participatory Urban Design Gaming
doi https://doi.org/10.52842/conf.caadria.2019.1.737
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 737-746
summary This paper discusses the methodology and results of the Maslow's Palace workshops project, which engages with current debates surrounding the democratisation of digital urban design technology and stakeholder decision making, through the implementation of a speculative oriented approach to serious gaming. The research explores how serious games might be used to help marginalised communities consider past, future and present community experiences, reconcile dissimilar assumptions, generate social capital building and design responses and prime participants for further long term design engagement processes. Empirical material for this research was gathered from a range of case study workshops prepared with three landfill-based communities and external partners throughout 2017. Results show the approach helped participants develop shared norms, values and understandings of sensitive topics and develop ideas for future action through "collective tinkering".
keywords Participatory design; urban design; social capital; serious games; slum upgrading
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2017_277
id ecaade2017_277
authors Borhani, Alireza and Kalantar, Negar
year 2017
title APART but TOGETHER - The Interplay of Geometric Relationships in Aggregated Interlocking Systems
doi https://doi.org/10.52842/conf.ecaade.2017.1.639
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 639-648
summary In this research, the authors discuss multiple design process criteria, fabrication methods, and assembly workflows for covering spaces using discrete pieces of material shorter than the space's span, otherwise known as topologically interlocking structures. To expand this line of research, the study challenges the interplay of geometric relationships in the assembly of unreinforced and mortar-less structures that work purely under compressive forces. This work opens with a review of studies concerning topological interlocking, a unique type of material and structural system. Then, through a description of two design projects - an interlocking footbridge and a vaulted structure - the authors demonstrate how they encouraged students to engage in a systematic exploration of the generative relationships among surface geometry, the configuration and formal variations of its subdividing cells, and the stability of the final interlocking assembly. In this fashion, the authors argue that there is hope for carrying the design criteria of topological interlocking systems into the production of precast concrete structures.
keywords Topological Interlocking Assembly, Digital Stereotomy, Compression-Only Vaulted Structures, Surface Tessellation, Digital Materiality.
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2017_049
id sigradi2017_049
authors Braida, Frederico; Cheyenne Azevedo, Izabela Ferreira, Janaina Castro, Janaina Castro
year 2017
title Projetando com blocos de montar: Residências mínimas no contexto da cidade contemporânea [Design with building blocks: Compact homes in the context of the contemporary city]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.335-343
summary This paper presents the results of the creation of a game, composed of building blocks, conceived as didactic material for the minimum residences design. The game was designed to be produced by rapid prototyping and digital manufacturing resources. Methodologically, the research was based on both a literature review and an empirical research on the use of a set of building blocks. The text shows the critical analysis and reflections on the results achieved with a workshop entitled "Designing compact homes with building blocks".
keywords Building blocks; Rapid prototyping; Digital fabrication; Education; Architecture.
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia17_164
id acadia17_164
authors Brugnaro, Giulio; Hanna, Sean
year 2017
title Adaptive Robotic Training Methods for Subtractive Manufacturing
doi https://doi.org/10.52842/conf.acadia.2017.164
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 164-169
summary This paper presents the initial developments of a method to train an adaptive robotic system for subtractive manufacturing with timber, based on sensor feedback, machine-learning procedures and material explorations. The methods were evaluated in a series of tests where the trained networks were successfully used to predict fabrication parameters for simple cutting operations with chisels and gouges. The results suggest potential benefits for non-standard fabrication methods and a more effective use of material affordances.
keywords design methods; information processing; construction; robotics; ai & machine learning; digital craft; manual craft
series ACADIA
email
last changed 2022/06/07 07:52

_id caadria2017_055
id caadria2017_055
authors Caetano, In?s and Leit?o, António
year 2017
title Integration of an Algorithmic BIM Approach in a Traditional Architecture Studio
doi https://doi.org/10.52842/conf.caadria.2017.633
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 633-642
summary Algorithmic BIM combines BIM and Generative Design (GD), merging the potentialities of both approaches. In this paper we describe the design process of a set of parametric facades developed using Algorithmic-BIM, and how this approach was integrated into the design workflow of two architectural studios. We demonstrate how the integration of GD together with BIM influenced the whole design process and also the selection of the final solution. Some of the limitations found during the entire process are also addressed in the paper, such as tight deadlines and financial constraints. Finally, we explain the pros and cons of using this design method compared to a traditional BIM approach, and we discuss the implementation of this paradigm in a traditional design practice. This work was developed using Rosetta, an IDE for Generative Design that supports scripts using different programming languages and allows the generation and edition of 3D models in a variety of CAD and BIM applications. The result of this work is an information model of three parametric facades for a residential building, from which we can extract material quantities and construction performance tests.
keywords Generative design; collaborative design; CAD-BIM portability; parametric facade design
series CAADRIA
email
last changed 2022/06/07 07:54

_id ijac201715106
id ijac201715106
authors Cardoso Llach, Daniel; Ardavan Bidgoli and Shokofeh Darbari
year 2017
title Assisted automation: Three learning experiences in architectural robotics
source International Journal of Architectural Computing vol. 15 - no. 1, 87-102
summary Fueled by long-standing dreams of both material efficiency and aesthetic liberation, robots have become part of mainstream architectural discourses, raising the question: How may we nurture an ethos of visual, tactile, and spatial exploration in technologies that epitomize the legacies of industrial automation—for example, the pursuit of managerial efficiency, control, and an ever-finer subdivision of labor? Reviewing and extending a growing body of research on architectural robotics pedagogy, and bridging a constructionist tradition of design education with recent studies of science and technology, this article offers both a conceptual framework and concrete strategies to incorporate robots into architectural design education in ways that foster a spirit of exploration and discovery, which is key to learning creative design. Through reflective accounts of three learning experiences, we introduce the notions “assisted automation” and “robotic embodiment” as devices to enrich current approaches to robot–human design, highlighting situated and embodied aspects of designing with robotic machines.
keywords Design education, architectural robotics, computational design, robot–human collaboration, studies of science and technology
series other
type normal paper
email
last changed 2019/08/02 08:28

_id sigradi2017_083
id sigradi2017_083
authors Castro Henriques, Gonçalo; Andrés Passaro, Guto Nóbrega
year 2017
title Tentáculos: Recriando criaturas híbridas, analógico-digitais [Tentacles: Recreating hybrid analog-digital creatures]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.575-583
summary This paper describes the development of a structure named Tentacles, belonging to the “Tele-biosphere” a wider project that explores the communication between hybrid systems that are both natural and artificial. Tentacles uncharted geometry is alive in many senses introducing structural difficulties inexistent in traditional beam and column framework. The initial form required structural expertise that the authors formally don’t possess, together with cost and manufacture constrains. To overcome these difficulties, a strategy based on the analogy with vertebrate species was developed, using discs, vertebrae, spine, tendons and tentacles. Authors argue that to solve this problem it was necessary to regain material intuition, combining computation with analogic thinking.
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia23_v1_166
id acadia23_v1_166
authors Chamorro Martin, Eduardo; Burry, Mark; Marengo, Mathilde
year 2023
title High-performance Spatial Composite 3D Printing
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 166-171.
summary This project explores the advantages of employing continuum material topology optimization in a 3D non-standard lattice structure through fiber additive manufacturing processes (Figure 1). Additive manufacturing (AM) has gained rapid adoption in architecture, engineering, and construction (AEC). However, existing optimization techniques often overlook the mechanical anisotropy of AM processes, resulting in suboptimal structural properties, with a focus on layer-by-layer or planar processes. Materials, processes, and techniques considering anisotropy behavior (Kwon et al. 2018) could enhance structural performance (Xie 2022). Research on 3D printing materials with high anisotropy is limited (Eichenhofer et al. 2017), but it holds potential benefits (Liu et al. 2018). Spatial lattices, such as space frames, maximize structural efficiency by enhancing flexural rigidity and load-bearing capacity using minimal material (Woods et al. 2016). From a structural design perspective, specific non-standard lattice geometries offer great potential for reducing material usage, leading to lightweight load-bearing structures (Shelton 2017). The flexibility and freedom of shape inherent to AM offers the possibility to create aggregated continuous truss-like elements with custom topologies.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id acadia17_178
id acadia17_178
authors Charbel, Hadin; López, Déborah
year 2017
title In(di)visible: Computing Immersive Environments through Hybrid Senses
doi https://doi.org/10.52842/conf.acadia.2017.178
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 178-189
summary The research presented in this paper seeks to examine how architecture and computational tools can be used to communicate on multiple levels by incorporating a series of qualitative and quantitative measures as criteria for a spatial and architectural design. Air is taken as a material that has the capacity to create boundaries, yet unless under extreme conditions often remains invisible. Varying in qualities such as temperature, humidity and pollution, the status of air is highly local to a particular context. The research explores how rendering air visible through an architectural intervention made of networked sentient prototypes can be used in the reation of a responsive outdoor public space. Although humans' ability to perceive and respond to stimuli is highly advanced, it is nevertheless limited in its spectrum. Within the urban context specifically, the information, material and flux being produced is becoming ever more complex and incomprehensible. While computational tools, sensors and data are increasingly accessible, advancements in the fields of cognitive sciences and biometrics are unraveling how the mind and body works. These developments are explored in tandem and applied through a proposed methodology. The project aims to negotiate the similarities and differences between humans and machines with respect to the urban environment. The hypothesis is that doing so will create a rich output, irreducible to a singular reading while heightening user experience and emphasizing a sense of place.
keywords design methods; information processing; hybrid practices; data visualization; computational / artistic cultures
series ACADIA
email
last changed 2022/06/07 07:55

_id ecaade2021_257
id ecaade2021_257
authors Cichocka, Judyta Maria, Loj, Szymon and Wloczyk, Marta Magdalena
year 2021
title A Method for Generating Regular Grid Configurations on Free-From Surfaces for Structurally Sound Geodesic Gridshells
doi https://doi.org/10.52842/conf.ecaade.2021.2.493
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 493-502
summary Gridshells are highly efficient, lightweight structures which can span long distances with minimal use of material (Vassallo & Malek 2017). One of the most promising and novel categories of gridshells are bending-active (elastic) systems (Lienhard & Gengnagel 2018), which are composed of flexible members (Kuijenhoven & Hoogenboom 2012). Timber elastic gridshells can be site-sprung or sequentially erected (geodesic). While a lot of research focus is on the site-sprung ones, the methods for design of sequentially-erected geodesic gridshells remained underdeveloped (Cichocka 2020). The main objective of the paper is to introduce a method of generating regular geodesic grid patterns on free-form surfaces and to examine its applicability to design structurally feasible geodesic gridshells. We adopted differential geometry methods of generating regular bidirectional geodesic grids on free-form surfaces. Then, we compared the structural performance of the regular and the irregular grids of the same density on three free-form surfaces. The proposed method successfully produces the regular geodesic grid patterns on the free-form surfaces with varying curvature-richness. Our analysis shows that gridshells with regular grid configurations perform structurally better than those with irregular patterns. We conclude that the presented method can be readily used and can expand possibilities of application of geodesic gridshells.
keywords elastic timber gridshell; bending-active structure; grid configuration optimization; computational differential geometry; material-based design methodology; free-form surface; pattern; geodesic
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia17_190
id acadia17_190
authors Coleman, James; Cole, Shannon
year 2017
title By Any Means Necessary: Digitally Fabricating Architecture at Scale
doi https://doi.org/10.52842/conf.acadia.2017.190
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 190-201
summary Architectural manufacturing is a balancing act between production facility and a custom fabrication shop. Each project Zahner takes on is different from the last, and not likely to repeat. This means that workflows are designed and deployed for each project individually. We present Flash Manufacturing, a fabrication methodology we employ in the production of architectural elements for cutting-edge and computationally sophisticated buildings. By remixing manufacturing techniques and production spaces we are able to meet the novel challenges posed by fabricating and assembling hundreds of thousands of unique parts. We discuss methods for producing vastly different project types and highlight two building case studies: the Cornell Tech Bloomberg Center and the Petersen Automotive Museum. With this work, we demonstrate how design creativity is no longer at odds with reliable and cost-effective building practices. Zahner has produced hundreds of seminal buildings working with architects such as: Gehry Partners, Zaha Hadid, m0rphosis, Herzog & de Meuron, OMA, Steven Holl Architects, Studio Daniel Libeskind, Rafael Moneo, DS+R, Foster + Partners, Gensler, KPF, SANAA and many more. This paper disrupts conventional discourse surrounding manufacturing/construction methods by discussing the realities of mass customization—how glossy architectural products are forged through ad hoc inventive engineering and risk tolerance.
keywords material and construction; fabrication; CAM; prototyping; construction; robotics
series ACADIA
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5HOMELOGIN (you are user _anon_621379 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002