CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 555

_id acadia17_178
id acadia17_178
authors Charbel, Hadin; López, Déborah
year 2017
title In(di)visible: Computing Immersive Environments through Hybrid Senses
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 178-189
doi https://doi.org/10.52842/conf.acadia.2017.178
summary The research presented in this paper seeks to examine how architecture and computational tools can be used to communicate on multiple levels by incorporating a series of qualitative and quantitative measures as criteria for a spatial and architectural design. Air is taken as a material that has the capacity to create boundaries, yet unless under extreme conditions often remains invisible. Varying in qualities such as temperature, humidity and pollution, the status of air is highly local to a particular context. The research explores how rendering air visible through an architectural intervention made of networked sentient prototypes can be used in the reation of a responsive outdoor public space. Although humans' ability to perceive and respond to stimuli is highly advanced, it is nevertheless limited in its spectrum. Within the urban context specifically, the information, material and flux being produced is becoming ever more complex and incomprehensible. While computational tools, sensors and data are increasingly accessible, advancements in the fields of cognitive sciences and biometrics are unraveling how the mind and body works. These developments are explored in tandem and applied through a proposed methodology. The project aims to negotiate the similarities and differences between humans and machines with respect to the urban environment. The hypothesis is that doing so will create a rich output, irreducible to a singular reading while heightening user experience and emphasizing a sense of place.
keywords design methods; information processing; hybrid practices; data visualization; computational / artistic cultures
series ACADIA
email deborahlopezlobato@gmail.com
last changed 2022/06/07 07:55

_id ecaade2017_265
id ecaade2017_265
authors Motalebi, Nasim and Duarte, José Pinto
year 2017
title A Shape Grammar of Emotional Postures - An approach towards encoding the analogue qualities of bodily expressions of emotions
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 485-492
doi https://doi.org/10.52842/conf.ecaade.2017.2.485
summary This paper is concerned with the translation of analogue qualities of human emotions into digital readings. Human body postures are considered as one of the main behavioral conduits for non-verbal communication and emotional expressions (Shan et.al., 2007). This research is the first step towards identifying and detecting emotions through posture analysis of users moving through space; leading towards generating real time responses in the form of spatial configurations to users' emotions. Such spatial configurations would then help inhabitants reach certain emotional states that would enhance their life quality. In order to achieve this goal, we propose a methodology for developing a comprehensive shape grammar algorithm that could evaluate and predict bodily expressions of emotions. The importance of this study lies under the embodied interactions (Streech et.al., 2011) in space. As the circumfixed space impacts the embodied mind, the body impacts its surrounding including the architectural space.
keywords Shape Grammar; Computation; Emotion; Posture; Interactive Architecture
series eCAADe
email nfm5140@psu.edu
last changed 2022/06/07 07:58

_id acadia17_482
id acadia17_482
authors Penman, Scott
year 2017
title Toward Computational Play
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 482- 491
doi https://doi.org/10.52842/conf.acadia.2017.482
summary The day is not far off when autonomous, artificially intelligent agents will be employed in creative industries such as architecture and design. Artificial intelligence is rapidly becoming ubiquitous, and it has absorbed many capabilities once thought beyond its reach. As such, it is critical that we reflect on the relationship between AI and design. Design is often tasked with pushing the envelope in the quest for novel meaning and experience. Designers can’t always rely upon existing models to judge their work. Operating like this requires a curious and open mind, a willingness to eschew reward and occasionally break the rules, and a desire to explore for the sake of exploring. These behaviors fly in the face of traditional implementations of computation and raise difficult questions about the autonomy and subjectivity of artificially intelligent machines. This paper proposes computational play as a field of research that covers how and why designers roam as freely as they do, what the creative potential of such exploration might be, and how such techniques might responsibly be implemented in computational machines. The work argues that autotelism, defined as internal motivation, is an essential aspect of play and outlines how it can be incorporated in a computational framework. The work also demonstrates a proof-of-concept in the form of an autonomous drawing machine that is able to plot a drawing, view the drawing, and make decisions based on what it sees, bringing computational vision and computational drawing together into a cyclical process that permits the use of autotelic play behavior.
keywords design methods; information processing; art and technology; computational / artistic cultures
series ACADIA
email sdpenman@mit.edu
last changed 2022/06/07 08:00

_id sigradi2017_091
id sigradi2017_091
authors Palavecino, Luisina; Gustavo Porta
year 2017
title Narrativas transmedia aplicadas al diseño para la educación [Transmedia storytelling applied to design for education]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.633-639
summary Nowadays, there is a necessity to close the gaps between the Educational System and the social-technical context in which students are immersed and give the opportunity to receive an education that takes into account their different preferences and interests. This research introduces the transmedia storytelling as an innovative resource so as to motivate significant learning which is connected with the new media production and knowledge distribution, bearing in mind the diversity of students` profiles.
series SIGRADI
email palavecino.luisina@gmail.com
last changed 2021/03/28 19:59

_id acadia17_18
id acadia17_18
authors Abdel-Rahman, Amira; Michalatos, Panagiotis
year 2017
title Magnetic Morphing
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 18-27
doi https://doi.org/10.52842/conf.acadia.2017.018
summary In an attempt to design shape-morphing multifunctional objects, this thesis uses programmable matter to design self-organizing multi-agent systems capable of morphing from one shape into another. The research looks at various precedents of self-assembly and modular robotics to design and prototype passive agents that could be cheaply mass-produced. Intelligence will be embedded into these agents on a material level, designing different local interactions to perform different global goals. The initial exploratory study looks at various examples from nature like plankton and molecules. Magnetic actuation is chosen as the external actuation force between agents. The research uses simultaneous digital and physical investigations to understand and design the interactions between agents. The project offers a systemic investigation of the effect of shape, interparticle forces, and surface friction on the packing and reconfiguration of granular systems. The ability to change the system state from a gaseous, liquid, then solid state offers new possibilities in the field of material computation, where one can design a "material" and change its properties on demand.
keywords material and construction; construction/robotics; smart materials; smart assembly/construction; simulation & optimization
series ACADIA
email amira-rahman@aucegypt.edu
last changed 2022/06/07 07:52

_id ecaade2017_054
id ecaade2017_054
authors Abramovic, Vasilija, Glynn, Ruairi and Achten, Henri
year 2017
title ROAMNITURE - Multi-Stable Soft Robotic Structures
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 327-336
doi https://doi.org/10.52842/conf.ecaade.2017.1.327
summary The rise in robotics is not only changing fabrication research in architecture but increasingly providing opportunities for animating the materiality of architecture, offering responsive, performative and adaptive design possibilities for the built environment. A fundamental challenge with robotics is its suitability to safe, and comfortable use in proximity to the human body. Here we present the preliminary results of the Roamniture Project, a hybrid approach to developing kinetic architecture based on a combination of rigid and soft body dynamics.
keywords Kinetic Architecture; Soft Robotics; Soft Architecture; Furniture
series eCAADe
email vasilijaabramovic@gmail.com
last changed 2022/06/07 07:54

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
doi https://doi.org/10.52842/conf.acadia.2021.530
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email aaadel@umich.edu
last changed 2023/10/22 12:06

_id caadria2017_147
id caadria2017_147
authors Agirachman, Fauzan Alfi, Ozawa, Yo, Indraprastha, Aswin, Shinozaki, Michihiko, Sitompul, Irene Debora Meilisa, Nuraeni, Ruri, Chirstanti, Augustine Nathania, Putra, Andrew Cokro and Zefanya, Teresa
year 2017
title Reimagining Braga - Remodeling Bandung's Historical Colonial Streetscape in Virtual Reality
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 23-32
doi https://doi.org/10.52842/conf.caadria.2017.023
summary This paper presents the experience of the first phase of remodeling existing historical and colonial district in Bandung, Indonesia, including existing building façade, streetscape and street furniture. Braga Street is chosen as study case because it is a well-known historical street in Bandung with art deco style buildings constructed during Dutch colonial era. By remodeling it, it could help stakeholders to evaluate existing Braga street condition, to test any modification of buildings along the street and to determine specific regulation for the street. In this case, we use Unity3D and Oculus Rift DK2 for remodeling current situation. We gathered feedback from respondents using a questionnaire given after they experienced the model in VR. Many lessons learned from modeling process and respondents' feedback: higher frame rate to make seamless VR experience by having all components on a low poly model and provide smoother movement to prevent visual discomfort. This paper's conclusion gives suggestions for anyone who want to start architecture modeling in virtual reality for the very first time and how to optimize it.
keywords Virtual reality; historical building; digital reconstruction; streetscape
series CAADRIA
email fauzan.alfi@s.itb.ac.id
last changed 2022/06/07 07:54

_id ijac201715203
id ijac201715203
authors Agirbas, Asli and Emel Ardaman
year 2017
title Macro-scale designs through topological deformations in the built environment
source International Journal of Architectural Computing vol. 15 - no. 2, 134-147
summary Design studies are being done on contemporary master-plans which may be applied in many locations worldwide. Advances in information technology are becoming the base model of design studies, and these may be more effective than the efforts of humans in the field of architecture and urban design. However, urban morphology variables and constants must be considered while designing contemporary master-plans in the existing built environment. The aims of this study were to extend the use of computer software for different applications and to make a topological work in the regional context. Accordingly, a case study was made using the nCloth simulation tools to create non-Euclidean forms while protecting the road system, which is one of the constant parameters of urban morphology in the built environment.
keywords Conceptual design, built environment, simulation, contemporary master-plans, urban morphology, topology
series other
type normal paper
email asliagirbas@gmail.com
last changed 2019/08/02 08:30

_id ecaade2017_021
id ecaade2017_021
authors Agirbas, Asli
year 2017
title The Use of Simulation for Creating Folding Structures - A Teaching Model
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 325-332
doi https://doi.org/10.52842/conf.ecaade.2017.1.325
summary In architectural education, the demand for creating forms with a non-Euclidean geometry, which can only be achieved by using the computer-aided design tools, is increasing. The teaching of this subject is a great challenge for both students and instructors, because of the intensive nature of architecture undergraduate programs. Therefore, for the creation of those forms with a non-Euclidean geometry, experimental work was carried out in an elective course based on the learning visual programming language. The creation of folding structures with form-finding by simulation was chosen as the subject of the design production which would be done as part of the content of the course. In this particular course, it was intended that all stages should be experienced, from the modeling in the virtual environment to the digital fabrication. Hence, in their early years of architectural education, the students were able to learn versatile thinking by experiencing, simultaneously, the use of simulation in the environment of visual programming language, the forming space by using folding structures, the material-based thinking and the creation of their designs suitable to the digital fabrication.
keywords Folding Structures; CAAD; Simulation; Form-finding; Architectural Education
series eCAADe
email asliagirbas@gmail.com
last changed 2022/06/07 07:54

_id cf2017_249
id cf2017_249
authors Agirbas, Asli
year 2017
title Teaching Design by Coding in Architecture Undergraduate Education: A Case Study with Islamic Patterns
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 249-258.
summary Computer-aided design has found its role in the undergraduate education of architects, and presently design by coding is also gradually finding further prominence in accord with the increasing demand by students who wish to learn more about this topic. This subject is included in an integrated manner in some studio courses on architecture design in some schools, or it is taught separately in elsewhere. In terms of the separate course on coding, the principal difficulty is that actual applications of the method can rarely be included due to time limitations and the fact that it is conducted separately from the studio course on architecture. However, within the framework of the architectural education, in order to learn about the coding it is necessary to consider it along with the design process, and this versatile thinking can only be achieved by the application of the design. In this study, an elective undergraduate course is considered in the context of design and to yield a versatile thinking strategy while learning the language of visual programming. The course progressed under the theoretical framework of shape grammar from the design stage through to the digital fabrication process, and the experimental studies were carried out on the selected topic of Islamic pattern. A method was proposed to improve the productivity of such courses, and an evaluation of the results is presented.
keywords Islamic Patterns, Shape Grammars, Architectural Education, Parametric Design, CAAD.
series CAAD Futures
email asliagirbas@gmail.com
last changed 2017/12/01 14:38

_id acadia17_28
id acadia17_28
authors Aguiar, Rita; Cardoso, Carmo; Leit?o,António
year 2017
title Algorithmic Design and Analysis Fusing Disciplines
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 28-37
doi https://doi.org/10.52842/conf.acadia.2017.028
summary In the past, there has been a rapid evolution in computational tools to represent and analyze architectural designs. Analysis tools can be used in all stages of the design process, but they are often only used in the final stages, where it might be too late to impact the design. This is due to the considerable time and effort typically needed to produce the analytical models required by the analysis tools. A possible solution would be to convert the digital architectural models into analytical ones, but unfortunately, this often results in errors and frequently the analytical models need to be built almost from scratch. These issues discourage architects from doing a performance-oriented exploration of their designs in the early stages of a project. To overcome these issues, we propose Algorithmic Design and Analysis, a method for analysis that is based on adapting and extending an algorithmic-based design representation so that the modeling operations can generate the elements of the analytical model containing solely the information required by the analysis tool. Using this method, the same algorithm that produces the digital architectural model can also automatically generate analytical models for different types of analysis. Using the proposed method, there is no information loss and architects do not need additional work to perform the analysis. This encourages architects to explore several design alternatives while taking into account the design’s performance. Moreover, when architects know the set of design variations they wish to analyze beforehand, they can easily automate the analysis process.
keywords design methods; information processing; simulation & optimization; BIM; generative system
series ACADIA
email rita.aguiar@ist.utl.pt
last changed 2022/06/07 07:54

_id acadia17_38
id acadia17_38
authors Ahlquist, Sean; McGee, Wes; Sharmin, Shahida
year 2017
title PneumaKnit: Actuated Architectures Through Wale- and Course-Wise Tubular Knit-Constrained Pneumatic Systems
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 38-51
doi https://doi.org/10.52842/conf.acadia.2017.038
summary This research explores the development of seamless pneumatically actuated systems whose motion is controlled by the combination of differentially knitted textiles and standardized thin-walled silicone tubing. This work proposes a fundamental material strategy that addresses challenges ranging from soft robotics to pneumatic architecture. Research in soft robotics seeks to achieve complex motions through non-mechanical monolithic systems, comprised of highly articulated shapes molded with a combination of elastic and inelastic materials. Inflatables in architecture focus largely on the active structuring of static forms, as facade systems or as structured envelopes. An emerging use of pneumatic architecture proposes morphable, adaptive systems accomplished through differentiated mechanically interconnected components. In the research described in this paper, a wide array of capabilities in motion and geometric articulation are accomplished through the design of knitted sleeves that generate a series of actuated “elbows.” As opposed to molding silicone bladders, differentiation in motion is generated through the more facile ability of changing stitch structure, and shaping of the knitted textile sleeve, which constrains the standard silicone tubing. The relationship between knit differentiation, pneumatic pressure, and the resultant motion profile is studied initially with individual actuators, and ultimately in propositions for larger seamless assemblies. As opposed to a cellular study of individual components, this research proposes structures with multi-scalar articulation, from fiber and stitch to overall form, composed into seamless, massively deformable architectures.
keywords material and construction; fabrication; construction/robotics
series ACADIA
email ahlquist@umich.edu
last changed 2022/06/07 07:54

_id acadia17_52
id acadia17_52
authors Ajlouni, Rima
year 2017
title Simulation of Sound Diffusion Patterns of Fractal-Based Surface Profiles
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 52-61
doi https://doi.org/10.52842/conf.acadia.2017.052
summary Acoustical design is one of the most challenging aspects of architecture. A complex system of competing influences (e.g., space geometry, size, proportion, material properties, surface detail, etc.) contribute to shaping the quality of the auditory experience. In particular, architectural surfaces affect the way that sound reflections propagate through space. By diffusing the reflected sound energy, surface designs can promote a more homogeneous auditory atmosphere by mitigating sharp and focused reflections. One of the challenges with designing an effective diffuser is the need to respond to a wide band of sound wavelengths, which requires the surface profile to precisely encode a range of detail sizes, depths and angles. Most of the available sound diffusers are designed to respond to a narrow band of frequencies. In this context, fractal-based surface designs can provide a unique opportunity for mitigating such limitations. A key principle of fractal geometry is its multilevel hierarchical order, which enables the same pattern to occur at different scales. This characteristic makes it a potential candidate for diffusing a wider band of sound wavelengths. However, predicting the reflection patterns of complicated fractal-based surface designs can be challenging using available acoustical software. These tools are often costly, complicated and are not designed for predicting early sound propagation paths. This research argues that writing customized algorithms provides a valuable, free and efficient alternative for addressing targeted acoustical design problems. The paper presents a methodology for designing and testing a customized algorithm for predicting sound diffusion patterns of fractal-based surfaces. Both quantitative and qualitative approaches were used to develop the code and evaluate the results.
keywords design methods; information processing; simulation & optimization; data visualization
series ACADIA
email ajlouni@arch.utah.edu
last changed 2022/06/07 07:54

_id acadia17_62
id acadia17_62
authors Al-Assaf, Nancy S.; Clayton, Mark J.
year 2017
title Representing the Aesthetics of Richard Meier’s Houses Using Building Information Modeling
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 62-71
doi https://doi.org/10.52842/conf.acadia.2017.062
summary Beyond its widespread use for representing technical aspects and matters of building and construction science, Building information modeling (BIM) can be used to represent architectural relationships and rules drawn from aesthetic theory. This research suggests that BIM provides not only vocabulary but also syntactical tools that can be used to capture an architectural language. In a case study using Richard Meier’s language for single-family detached houses, a BIM template has been devised to represent the aesthetic concepts and relations therein. The template employs parameterized conceptual mass objects, syntactical rules, and a library of architectonic elements, such as walls, roofs, columns, windows, doors, and railings. It constrains any design produced using the template to a grammatically consistent expression or style. The template has been used as the starting point for modeling the Smith House, the Douglas House, and others created by the authors, demonstrating that the aesthetic template is general to many variations. Designing with the template to produce a unique but conforming design further illustrates the generality and expressiveness of the language. Having made the formal language explicit, in terms of syntactical rules and vocabulary, it becomes easier to vary the formal grammar and concrete vocabulary to produce variant languages and styles. Accordingly, this approach is not limited to a specific style, such as Richard Meier's. Future research can be conducted to demonstrate how designing with BIM can support stylistic change. Adoption of this approach in practice could improve the consistency of architectural designs and their coherence to defined styles, potentially increasing the general level of aesthetic expression in our built environment.
keywords design methods; information processing; BIM; education
series ACADIA
email nancy.alassaf@tamu.edu
last changed 2022/06/07 07:54

_id cf2017_115
id cf2017_115
authors Alambeigi, Pantea; Chen, Canhui; Burry, Jane; Cheng, Eva
year 2017
title Shape the Design with Sound Performance Prediction: A Case Study for Exploring the Impact of Early Sound Performance Prediction on Architectural Design
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 115-127.
summary Acoustics is typically considered only late in developed design or even post occupancy, if at all, for specification of finishes and furnishing, and typically with a remedial mindset. In this paper, the role of sound performance as a design driver in increasing the speech privacy of a semi-enclosed meeting space in an open plan interior is studied. Sound performance prediction is applied as an imperative input to inform the meeting space design. The design is the second iteration in an evolving series of meeting spaces, and therefore has benefited from both subjective experiments and objective measurements performed with the first meeting space prototype. This study promotes a design method that offers a strong relationship between the digital simulation of sound performance and design development. By improving the speech privacy of a meeting space by means of purely form, geometry and design decisions, the significance of architecture in tuning the sound performance of a space is investigated.
keywords Sound Performance Prediction, Sound Simulation, Meeting Space, Architectural Design
series CAAD Futures
email Pantea.Alambeigi, Canhui.Chen, Eva.Cheng}@rmit.edu.au, JBurry@swin.edu.au
last changed 2017/12/01 14:37

_id sigradi2017_016
id sigradi2017_016
authors Alexandre da Silva, Geovany Jessé; Carlos Alejandro Nome, Lucy Donegan
year 2017
title Ferramentas de Projeto para análise da qualidade urbana: Relacionando forma, usos, densidade e configuração espacial na cidade de João Pessoa, Brasil. [Design tools to assess urban quality: Relating form, uses, density and spatial configuration in João Pessoa city, Brazil.]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.123-129
summary This paper describes an experience in a Graduate course Architecture and Urbanism that used computational tools to analyze urban quality – considering form, uses, density and spatial configuration (based on visual and fields) – in different urban areas in the city of João Pessoa. Understanding that the city is a problem in organized complexity, different aspects condition the quality of use of spaces and reveal urban dynamics. Urban analysis aided by computational tools revealed successful in characterizing different problems and potentialities that can lay the foundation for interventions with more urban quality.
keywords Design computational tools; Study of urban form, uses and density; Urban space performance; Spatial configuration.
series SIGRADI
email galexarq.ufpb@gmail.com
last changed 2021/03/28 19:58

_id acadia17_72
id acadia17_72
authors Alfaiate, Pedro; Caetano, In?s; Leit?o, António
year 2017
title Luna Moth: Supporting Creativity in the Cloud
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 72-81
doi https://doi.org/10.52842/conf.acadia.2017.072
summary Algorithmic design allows architects to design using a programming-based approach. Current algorithmic design environments are based on existing computer-aided design applications or building information modeling applications, such as AutoCAD, Rhinoceros 3D, or Revit, which, due to their complexity, fail to give architects the immediate feedback they need to explore algorithmic design. In addition, they do not address the current trend of moving applications to the cloud to improve their availability. To address these problems, we propose a software architecture for an algorithmic design integrated development environment (IDE), based on web technologies, that is more interactive than competing algorithmic design IDEs. Besides providing an intuitive editing interface which facilitates programming tasks for architects, its performance can be an order of magnitude faster than current algorithmic design IDEs, thus supporting real-time feedback with more complex algorithmic design programs. Moreover, our solution also allows architects to export the generated model to their preferred computer-aided design applications. This results in an algorithmic design environment that is accessible from any computer, while offering an interactive editing environment that integrates into the architect’s workflow.
keywords design methods; information processing; generative system; computational / artistic cultures
series ACADIA
email pedro.a.f.alfaiate@gmail.com
last changed 2022/06/07 07:54

_id sigradi2017_015
id sigradi2017_015
authors Almeida, Adriane Borda; Juçara Nunes da Silva
year 2017
title Referenciais Didáticos de Arquitetura a partir de Gaudí e Gehry: Entre Forças e Fraquezas, Ameaças e Oportunidades [Didactic References of Architecture from Gaudí and Gehry: Between Strengths and Weaknesses, Threats and Opportunities]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.114-122
summary The challenges on the ways of producing and teaching architecture, in the face of new digital technologies, led us to develop guidelines for updating didactic strategies in the area of teaching geometry and graphic representation in architecture courses. In order to do so, it is proposed to use the SWOT matrix as a way to cross-check what is being discussed. To identify the factors of the matrix, in the research environment we identify Opportunities and Threats and, using as examples the works of the Sagrada Familia Temple and the Guggenheim Museum, we identify Strenghts and Weaknesses.
keywords Geometry; Design; Technologies of Representation; Didactic Speech.
series SIGRADI
email adribord@hotmail.com
last changed 2021/03/28 19:58

_id ecaade2017_184
id ecaade2017_184
authors Almeida, Daniel and Sousa, José Pedro
year 2017
title Tradition and Innovation in Digital Architecture - Reviewing the Serpentine Gallery Pavilion 2005
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 267-276
doi https://doi.org/10.52842/conf.ecaade.2017.1.267
summary Please write your aToday, in a moment when digital technologies are taking command of many architectural design and construction processes, it is important to examine the place and role of traditional ones. Designed by Álvaro Siza and Eduardo Souto de Moura in collaboration with Cecil Balmond, the Serpentine Gallery Pavilion 2005 reflects the potential of combining those two different approaches in the production of innovative buildings. For inquiring this argument, this paper investigates the development of this project from its conception to construction with a double goal: to uncover the relationship between analogical and digital processes, and to understand the architects' role in a geographically distributed workflow, which involved the use of computational design and robotic fabrication technologies. To support this examination, the authors designed and fabricated a 1:3 scale prototype of part of the Pavilion, which also served to check and reflect on the technological evolution since then, which is setting different conditions for design development and collaboration.bstract here by clicking this paragraph.
keywords Serpentine Gallery Pavilion; Computational Design; Digital Fabrication; Wooden Construction; Architectural Representation;
series eCAADe
email jsousa@arq.up.pt
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_856466 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002