CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 570

_id acadia18_444
id acadia18_444
authors Sabin, Jenny; Pranger, Dillon; Binkley, Clayton; Strobel, Kristen; Liu, Jingyang (Leo)
year 2018
title Lumen
doi https://doi.org/10.52842/conf.acadia.2018.444
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 444-455
summary This paper documents the computational design methods, digital fabrication strategies, and generative design process for Lumen, winner of MoMA & MoMA PS1’s 2017 Young Architects Program. The project was installed in the courtyard at MoMA PS1 in Long Island City, New York, during the summer of 2017. Two lightweight 3D digitally knitted fabric canopy structures composed of responsive tubular and cellular components employ recycled textiles, photo-luminescent and solar active yarns that absorb and store UV energy, change color, and emit light. This environment offers spaces of respite, exchange, and engagement as a 150 x 75-foot misting system responds to visitors’ proximity, activating fabric stalactites that produce a refreshing micro-climate. Families of robotically prototyped and woven recycled spool chairs provide seating throughout the courtyard. The canopies are digitally fabricated with over 1,000,000 yards of high tech responsive yarn and are supported by three 40+ foot tensegrity towers and the surrounding matrix of courtyard walls. Material responses to sunlight as well as physical participation are integral parts of our exploratory approach to the 2017 YAP brief. The project is mathematically generated through form-finding simulations informed by the sun, site, materials, program, and the material morphology of knitted cellular components. Resisting a biomimetic approach, Lumen employs an analogic design process where complex material behavior and processes are integrated with personal engagement and diverse programs. The comprehensive installation was designed by Jenny Sabin Studio and fabricated by Shima Seiki WHOLEGARMENT, Jacobsson Carruthers, and Dazian with structural engineering by Arup and lighting by Focus Lighting.
keywords full paper, materials & adaptive systems, digital fabrication, flexible structures, performance + simulation
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id lasg_whitepapers_2019_291
id lasg_whitepapers_2019_291
authors Sabin, Jenny
year 2019
title Lumen
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.291 - 318
summary This paper documents the computational design methods, digital fabrication strategies, and generative design process for [Lumen], winner of MoMA & MoMA PS1’s 2017 Young Architects Program. The project was installed in the courtyard at MoMA PS1 in Long Island City, New York, during the summer of 2017. Two lightweight 3D digitally knitted fabric canopy structures composed of responsive tubular and cellular components employ recycled textiles, photo-luminescent and solar active yarns that absorb and store UV energy, change color, and emit light. This environment offers spaces of respite, exchange, and engagement as a 150 x 75-foot misting system responds to visitors’ proximity, activating fabric stalactites that produce a refreshing micro-climate. Families of robotically prototyped and woven recycled spool chairs provide seating throughout the courtyard. The canopies are digitally fabricated with over 1,000,000 yards of high tech responsive yarn and are supported by three 40+ foot tensegrity towers and the surrounding matrix of courtyard walls. Material responses to sunlight as well as physical participation are integral parts of our exploratory approach to the 2017 YAP brief. The project is mathematically generated through form-finding simulations informed by the sun, site, materials, program, and the material morphology of knitted cellular components. Resisting a biomimetic approach, [Lumen] employs an analogic design process where complex material behavior and processes are integrated with personal engagement and diverse programs. The comprehensive installation was designed by Jenny Sabin Studio and fabricated by Shima Seiki WHOLEGARMENT, Jacobsson Carruthers, and Dazian with structural engineering by Arup and lighting by Focus Lighting.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id acadia17_38
id acadia17_38
authors Ahlquist, Sean; McGee, Wes; Sharmin, Shahida
year 2017
title PneumaKnit: Actuated Architectures Through Wale- and Course-Wise Tubular Knit-Constrained Pneumatic Systems
doi https://doi.org/10.52842/conf.acadia.2017.038
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 38-51
summary This research explores the development of seamless pneumatically actuated systems whose motion is controlled by the combination of differentially knitted textiles and standardized thin-walled silicone tubing. This work proposes a fundamental material strategy that addresses challenges ranging from soft robotics to pneumatic architecture. Research in soft robotics seeks to achieve complex motions through non-mechanical monolithic systems, comprised of highly articulated shapes molded with a combination of elastic and inelastic materials. Inflatables in architecture focus largely on the active structuring of static forms, as facade systems or as structured envelopes. An emerging use of pneumatic architecture proposes morphable, adaptive systems accomplished through differentiated mechanically interconnected components. In the research described in this paper, a wide array of capabilities in motion and geometric articulation are accomplished through the design of knitted sleeves that generate a series of actuated “elbows.” As opposed to molding silicone bladders, differentiation in motion is generated through the more facile ability of changing stitch structure, and shaping of the knitted textile sleeve, which constrains the standard silicone tubing. The relationship between knit differentiation, pneumatic pressure, and the resultant motion profile is studied initially with individual actuators, and ultimately in propositions for larger seamless assemblies. As opposed to a cellular study of individual components, this research proposes structures with multi-scalar articulation, from fiber and stitch to overall form, composed into seamless, massively deformable architectures.
keywords material and construction; fabrication; construction/robotics
series ACADIA
email
last changed 2022/06/07 07:54

_id ecaade2017_089
id ecaade2017_089
authors Petrš, Jan, Havelka, Jan, Florián, Miloš and Novák, Jan
year 2017
title MoleMOD - On Design specification and applications of a self-reconfigurable constructional robotic system
doi https://doi.org/10.52842/conf.ecaade.2017.2.159
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 159-166
summary The paper explores the use of in-house developed self-reconfigurable modular robotic system in civil construction activities and investigates a concept where an arbitrary Civil Engineering structure or a daily use industrial product are self-assembled from a number of self-reconfigurable composite blocks. The system extends current range of modular robot systems (mDrs) where autonomous modules self-assemble into a wide variety of forms. However, contrary to conventional mDrs, MoleMOD has not mechatronic actuating parts permanently fixed to each individual module. The MoleMOD actuators are separable and operate inside the modules, tight them together or relocate them to required configuration. It significantly reduces number of expensive mechatronics parts and the environment the actuators operate. Although MoleMOD focuses on architecture, it can take over other mDrs tasks as research and rescue. This paper describes properties, advantages, foreseen applications, and basic design specifications of the second generation prototype.
keywords Modular robotic systems; Mobile robotic systems; Adaptive architecture; MoleMOD; Smart materials and structures; Multi-robot systems
series eCAADe
email
last changed 2022/06/07 08:00

_id sigradi2022_51
id sigradi2022_51
authors Varsami, Constantina; Tsamis, Alexandros; Logan, Timothy
year 2022
title Gaming Engine as a Tool for Designing Smart, Interactive, Light-Sculpting Systems
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 617–628
summary Even though interactive (Offermans et.al., 2013), adaptive (Viani et.al., 2017), and self-optimizable (Sun et.al., 2020) lighting systems are becoming readily available, designing system automations, and evaluating their impact on user experience significantly challenges designers. In this paper we demonstrate the use of a gaming engine as a platform for designing, simulating, and evaluating autonomous smart lighting behaviors. We establish the Human - Lighting System Interaction Framework, a computational framework for developing a Light Sculpting Engine and for designing occupant-system interactions. Our results include a. a method for combining in real-time lighting IES profiles into a single ‘combined’ profile - b. algorithms that optimize in real-time, lighting configurations - c. direct glare elimination algorithms, and d. system energy use optimization algorithms. Overall, the evolution from designing static building components to designing interactive systems necessitates the reconsideration of methods and tools that allow user experience and system performance to be tuned by design.
keywords User Experience, Human-Building Interaction, Smart Lighting, Lighting Simulation, Gaming Engine
series SIGraDi
email
last changed 2023/05/16 16:56

_id ecaade2017_134
id ecaade2017_134
authors Del Signore, Marcella
year 2017
title pneuSENSE - Transcoding social ecologies
doi https://doi.org/10.52842/conf.ecaade.2017.2.537
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 537-544
summary Cities are continuously produced through entropic processes that mediate between complex networked systems and the immediacy urban life. Emergent media technologies inform new relationships between information and matter, code and space to redefine new urban ecosystems. Modes of perceiving, experiencing and inhabiting cities are radically changing along with a radical transformation of the tools that we use to design. Cities as complex and systemic organisms require approaches that engage new multi-scalar strategies to connect the physical layer with the system of networked ecologies. This paper aims at investigating emerging and novel forms of reading and producing urban spaces reimagining the physical city through intelligent and mediated processes. Through data agency and responsive urban processes, the design methodology explored the materialization of a temporary pneumatic structure and membrane that tested material performance through fabrication and sensing practices through the pneuSENSE project developed in July 2016 in New York at the Brooklyn Navy Yard during the 'HyperCities' IaaC- Institute for Advanced Architecture of Catalonia - Global Summer School.
keywords responsive urban processes; data agency ; reciprocity between micro (body) and macro (environment); dynamics of social ecologies; mapped-environment
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia17_544
id acadia17_544
authors Schleicher, Simon; La Magna, Riccardo; Zabel, Joshua
year 2017
title Bending-active Sandwich Shells: Studio One Research Pavilion 2017
doi https://doi.org/10.52842/conf.acadia.2017.544
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 544- 551
summary The goal of this paper is to advance the research on bending-active structures by investigating the system’s inherent structural characteristics and introducing an alternative approach to their design and fabrication. With this project, the authors propose the use of sandwich-structured composites to improve the load-bearing behavior of bending-active shells. By combining digital form-finding and form-conversion processes, it becomes possible to discretize a double-curved shell geometry into an assembly of single-curved sandwich strips. Due to the clever use of bending in the construction process, these strips can be made out of inexpensive and flat sheet materials. The assembly itself takes advantage of two fundamentally different structural states. When handled individually, the thin panels are characterized by their high flexibility, yet when cross-connected to a sandwich, they gain bending stiffness and increase the structure’s rigidity. To explain the possible impacts of this approach, the paper will discuss the advantages and disadvantages of bending-active structures in general and outline the potential of sandwich shells in particular. Furthermore, the authors will address the fundamental question of how to build a load-bearing system from flexible parts by using the practical example of the Studio One Research Pavilion. To illustrate this project in more detail, the authors will present the digital design process involved as well as demonstrate the technical feasibility of this approach through a built prototype in full scale. Finally, the authors will conclude with a critical discussion of the design approach proposed here and point out interesting topics for future research.
keywords material and construction
series ACADIA
email
last changed 2022/06/07 07:57

_id acadia23_v1_166
id acadia23_v1_166
authors Chamorro Martin, Eduardo; Burry, Mark; Marengo, Mathilde
year 2023
title High-performance Spatial Composite 3D Printing
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 166-171.
summary This project explores the advantages of employing continuum material topology optimization in a 3D non-standard lattice structure through fiber additive manufacturing processes (Figure 1). Additive manufacturing (AM) has gained rapid adoption in architecture, engineering, and construction (AEC). However, existing optimization techniques often overlook the mechanical anisotropy of AM processes, resulting in suboptimal structural properties, with a focus on layer-by-layer or planar processes. Materials, processes, and techniques considering anisotropy behavior (Kwon et al. 2018) could enhance structural performance (Xie 2022). Research on 3D printing materials with high anisotropy is limited (Eichenhofer et al. 2017), but it holds potential benefits (Liu et al. 2018). Spatial lattices, such as space frames, maximize structural efficiency by enhancing flexural rigidity and load-bearing capacity using minimal material (Woods et al. 2016). From a structural design perspective, specific non-standard lattice geometries offer great potential for reducing material usage, leading to lightweight load-bearing structures (Shelton 2017). The flexibility and freedom of shape inherent to AM offers the possibility to create aggregated continuous truss-like elements with custom topologies.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ecaade2021_257
id ecaade2021_257
authors Cichocka, Judyta Maria, Loj, Szymon and Wloczyk, Marta Magdalena
year 2021
title A Method for Generating Regular Grid Configurations on Free-From Surfaces for Structurally Sound Geodesic Gridshells
doi https://doi.org/10.52842/conf.ecaade.2021.2.493
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 493-502
summary Gridshells are highly efficient, lightweight structures which can span long distances with minimal use of material (Vassallo & Malek 2017). One of the most promising and novel categories of gridshells are bending-active (elastic) systems (Lienhard & Gengnagel 2018), which are composed of flexible members (Kuijenhoven & Hoogenboom 2012). Timber elastic gridshells can be site-sprung or sequentially erected (geodesic). While a lot of research focus is on the site-sprung ones, the methods for design of sequentially-erected geodesic gridshells remained underdeveloped (Cichocka 2020). The main objective of the paper is to introduce a method of generating regular geodesic grid patterns on free-form surfaces and to examine its applicability to design structurally feasible geodesic gridshells. We adopted differential geometry methods of generating regular bidirectional geodesic grids on free-form surfaces. Then, we compared the structural performance of the regular and the irregular grids of the same density on three free-form surfaces. The proposed method successfully produces the regular geodesic grid patterns on the free-form surfaces with varying curvature-richness. Our analysis shows that gridshells with regular grid configurations perform structurally better than those with irregular patterns. We conclude that the presented method can be readily used and can expand possibilities of application of geodesic gridshells.
keywords elastic timber gridshell; bending-active structure; grid configuration optimization; computational differential geometry; material-based design methodology; free-form surface; pattern; geodesic
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia17_238
id acadia17_238
authors El-Zanfaly, Dina
year 2017
title A Multisensory Computational Model for Human-Machine Making and Learning
doi https://doi.org/10.52842/conf.acadia.2017.238
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 238-247
summary Despite the advancement of digital design and fabrication technologies, design practices still follow Alberti’s hylomorphic model of separating the design phase from the construction phase. This separation hinders creativity and flexibility in reacting to surprises that may arise during the construction phase. These surprises often come as a result of a mismatch between the sophistication allowed by the digital technologies and the designer’s experience using them. These technologies and expertise depend on one human sense, vision, ignoring other senses that could be shaped and used in design and learning. Moreover, pedagogical approaches in the design studio have not yet fully integrated digital technologies as design companions; rather, they have been used primarily as tools for representation and materialization. This research introduces a multisensory computational model for human-machine making and learning. The model is based on a recursive process of embodied, situated, multisensory interaction between the learner, the machines and the thing-in-the-making. This approach depends heavily on computational making, abstracting, and describing the making process. To demonstrate its effectiveness, I present a case study from a course I taught at MIT in which students built full-scale, lightweight structures with embedded electronics. This model creates a loop between design and construction that develops students’ sensory experience and spatial reasoning skills while at the same time enabling them to use digital technologies as design companions. The paper shows that making can be used to teach design while enabling the students to make judgments on their own and to improvise.
keywords education, society & culture; fabrication
series ACADIA
email
last changed 2022/06/07 07:55

_id acadia17_248
id acadia17_248
authors Felbrich, Benjamin; Fru?h, Nikolas; Prado, Marshall; Saffarian, Saman; Solly, James; Vasey, Lauren; Knippers, Jan; Menges, Achim
year 2017
title Multi-Machine Fabrication: An Integrative Design Process Utilising an Autonomous UAV and Industrial Robots for the Fabrication of Long-Span Composite Structures
doi https://doi.org/10.52842/conf.acadia.2017.248
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 248-259
summary Fiber composite materials have tremendous potential in architectural applications due to their high strength-to-weight ratio and their ability to be formed into complex shapes. Novel fabrication processes can be based on the unique affordances and characteristics of fiber composites. Because these materials are lightweight and have high tensile strength, a radically different approach to fabrication becomes possible, which combines low-payload yet long-range machines—such as unmanned aerial vehicles (UAV)—with strong, precise, yet limited-reach industrial robots. This collaborative concept enables a scalable fabrication setup for long-span fiber composite construction. This paper describes the integrated design process and design development of a large-scale cantilevering demonstrator, in which the fabrication setup, robotic constraints, material behavior, and structural performance were integrated in an iterative design process.
keywords material and construction; fabrication; construction; robotics
series ACADIA
email
last changed 2022/06/07 07:50

_id sigradi2020_643
id sigradi2020_643
authors Naylor, John Osmond; Leconte, Nancy; Michel Vendryes, Franck Reginald
year 2020
title Education to practice to ecology: A review and preliminary evaluation of a new architectural design curriculum using computational design tools and bamboo in Haiti
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 643-651
summary There is an absence of lightweight, sustainable construction materials in contemporary Haitian construction, a fact highlighted in the disproportionate loss of life in the 2010 Port-au-Prince earthquake. Between 2014 and 2017 the authors delivered a series of architectural design workshops in Haiti to raise awareness and develop design skills for bamboo using computational design tools. This paper provides a review of these workshops and a preliminary evaluation from surveys conducted with the course participants. Results showed architectural education had changed perceptions of bamboo and showed potential positive ecological impact due to subsequent reforestation activities instigated by participants. Weaknesses were in the lack of subsequent use of parametric modelling software. Bamboo material knowledge and a new architectural design methodology have been most relevant to their professional or academic work.
keywords Haiti, Full-culm bamboo, Architectural education, Sustainable development, Parametric design
series SIGraDi
email
last changed 2021/07/16 11:52

_id acadia17_492
id acadia17_492
authors Robeller, Christopher; Weinand, Yves
year 2017
title Realization of a Double-Layered Diamond Vault Made from CLT: Constraint-aware design for assembly, for the first integrally attached Timber Folded Plate lightweight structure, covering a column free span of 20 meters with only 45 millimeter thick CLT plates.
doi https://doi.org/10.52842/conf.acadia.2017.492
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 492- 501
summary The use of digital design and fabrication technology for the integration of joints into timber plate structures has been the subject of recent research in the field of architectural geometry. While most of research has been focused on joint geometries, assembly sequences, and the fabrication of smaller prototypes, there have been few implementations in buildings. This paper illustrates the challenges for such a process and offers our solutions for implementing it at a building scale through the example of a theater hall built from cross-laminated timber plates. The building achieves its column-free span of 20 meters with a plate thickness of only 45 mm through a form-active lightweight structure system. It combines prismatic and antiprismatic folded surfaces and a double-layered cross-section with integrated thermal insulation.
keywords material and construction; fabrication
series ACADIA
email
last changed 2022/06/07 07:56

_id acadia17_572
id acadia17_572
authors Sparrman, Bjorn; Matthews, Chris; Kernizan, Schendy; Chadwick, Aran; Thomas, Neil; Laucks, Jared; Tibbits, Skylar
year 2017
title Large-Scale Lightweight Transformable Structures
doi https://doi.org/10.52842/conf.acadia.2017.572
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 572- 581
summary This paper presents strategies for the creation of large-scale transformable structures. In particular we work to leverage material properties and novel construction techniques to induce transformation. We employ flexible biaxial braided geometries to create interconnected large-scale textile surfaces. These braided networks distribute load forces via their internal friction, allowing for uniform structural transformation without the need for complicated mechanical linkages or electromechanical actuation. The ultimate range of these structures has been simulated with computational tools and correlated with physical load testing. We present various applications and configurations of these transforming structures that demonstrate their utility and a new attitude toward the creation of lightweight morphable structures.
keywords material and construction; simulation & optimization; fabrication; form finding
series ACADIA
email
last changed 2022/06/07 07:56

_id acadia17_630
id acadia17_630
authors Vasanthakumar, Saeran; Saha, Nirvik; Haymaker, John; Shelden, Dennis
year 2017
title Bibil: A Performance-Based Framework to Determine Built Form Guidelines
doi https://doi.org/10.52842/conf.acadia.2017.630
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 630- 639
summary City built-form guidelines act as durable constraints on building design decisions. Such guidelines directly impact energy, comfort and other performance conditions. Existing urban design and planning methods only consider a narrow range of potential design scenarios, with rudimentary performance criteria, resulting in suboptimal urban designs. Bibil is a software plugin for the Rhinoceros3D/Grasshopper3D CAD modeler that addresses this gap through the synthesis of design space exploration methods to help design teams optimize guidelines for environmental and energy performance criteria over the life cycle of the city. Bibil consists of three generative and data management modules. The first module simulates development scenarios from street and block information through time, the second designs appropriate architectural typology, and the third abstracts the typologies into a lightweight analysis model for detailed thermal load and energy simulation. State-of-the-art performance simulation is done via the Ladybug Analysis Tools Grasshopper3D plugin, and further bespoke analysis to explore the resulting design space is achieved with custom Python scripts.This paper first introduces relevant background for automated exploration of urban design guidelines. Then the paper surveys the state-of-the-art in design and performance simulation tools in the urban domain. Next the paper describes the beta version of the tool’s three modules and its application in a built form study to assess urban canyon performance in a major North American city. Bibil enables the exploration of a broader range of potential design scenarios, for a broader range of performance criteria, over a longer period of time.
keywords design methods; information processing; simulation & optimization; form finding; generative system
series ACADIA
email
last changed 2022/06/07 07:58

_id acadia17_18
id acadia17_18
authors Abdel-Rahman, Amira; Michalatos, Panagiotis
year 2017
title Magnetic Morphing
doi https://doi.org/10.52842/conf.acadia.2017.018
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 18-27
summary In an attempt to design shape-morphing multifunctional objects, this thesis uses programmable matter to design self-organizing multi-agent systems capable of morphing from one shape into another. The research looks at various precedents of self-assembly and modular robotics to design and prototype passive agents that could be cheaply mass-produced. Intelligence will be embedded into these agents on a material level, designing different local interactions to perform different global goals. The initial exploratory study looks at various examples from nature like plankton and molecules. Magnetic actuation is chosen as the external actuation force between agents. The research uses simultaneous digital and physical investigations to understand and design the interactions between agents. The project offers a systemic investigation of the effect of shape, interparticle forces, and surface friction on the packing and reconfiguration of granular systems. The ability to change the system state from a gaseous, liquid, then solid state offers new possibilities in the field of material computation, where one can design a "material" and change its properties on demand.
keywords material and construction; construction/robotics; smart materials; smart assembly/construction; simulation & optimization
series ACADIA
email
last changed 2022/06/07 07:52

_id ecaade2017_085
id ecaade2017_085
authors Agustí-Juan, Isolda, Hollberg, Alexander and Habert, Guillaume
year 2017
title Integration of environmental criteria in early stages of digital fabrication
doi https://doi.org/10.52842/conf.ecaade.2017.2.185
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 185-192
summary The construction sector is responsible for a big share of the global energy, resource demand and greenhouse gas emissions. As such, buildings and their designers are key players for carbon mitigation actions. Current research in digital fabrication is beginning to reveal its potential to improve the sustainability of the construction sector. To evaluate the environmental performance of buildings, life cycle assessment (LCA) is commonly employed. Recent research developments have successfully linked LCA to CAD and BIM tools for a faster evaluation of environmental impacts. However, these are only partially applicable to digital fabrication, because of differences in the design process. In contrast to conventional construction, in digital fabrication the geometry is the consequence of the definition of functional, structural and fabrication parameters during design. Therefore, this paper presents an LCA-based method for design-integrated environmental assessment of digitally fabricated building elements. The method is divided into four levels of detail following the degree of available information during the design process. Finally, the method is applied to the case study "Mesh Mould", a digitally fabricated complex concrete wall that does not require any formwork. The results prove the applicability of the method and highlight the environmental benefits digital fabrication can provide.
keywords Digital fabrication; Parametric LCA; Early design; Sustainability
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia17_92
id acadia17_92
authors Anzalone, Phillip; Bayard, Stephanie; Steenblik, Ralph S.
year 2017
title Rapidly Deployed and Assembled Tensegrity System: An Augmented Design Approach
doi https://doi.org/10.52842/conf.acadia.2017.092
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 92-101
summary The Rapidly Deployable and Assembled Tensegrity (RDAT) project enables the efficient automated design and deployment of differential-geometry tensegrity structures through computation-driven design-to-installation workflow. RDAT employs the integration of parametric and solid-modeling methods with production by streamlining computer numerically controlled manufacturing through novel detailing and production techniques to develop an efficient manufacturing and assembly system. The RDAT project emerges from the Authors' research in academia and professional practice focusing on computationally produced full-scale performative building systems and their innovative uses in the building and construction industry.
keywords design methods; information processing; AI; machine learning; form finding; VR; AR; mixed reality
series ACADIA
email
last changed 2022/06/07 07:54

_id caadria2017_115
id caadria2017_115
authors Araullo, Rebekah and Haeusler, M. Hank
year 2017
title Asymmetrical Double-Notch Connection System in Planar Reciprocal Frame Structures
doi https://doi.org/10.52842/conf.caadria.2017.539
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 539-548
summary Reciprocal Frame Structures (RF) have broad application potentials. Flexible to using small available materials, they span large areas, including varied curvature and doubly-curved forms. Although not many buildings using RF have been constructed to date, records indicate RF efficiencies where timber was widely used in structures predating modern construction. For reasons of adaptability and economy, advances in computation and fabrication precipitated increase in research into RF structures as a contemporary architectural typology. One can observe that linear timber such as rods and bars feature in extensive RF research. However, interest in planar RF has only recently emerged in research. Hence one can argue that planar RF provides depth to explore new design possibilities. This paper contributes to the growing knowledge of planar RF by presenting a design project that demonstrates an approach in notching systems to explore design and structural performance. The design project, the developed design workflow, fabrication, assembly and evaluation are discussed in this paper.
keywords Reciprocal Frame Structures; Space Frames; Computational Design; Digital Fabrication; Deployable Architecture
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia17_164
id acadia17_164
authors Brugnaro, Giulio; Hanna, Sean
year 2017
title Adaptive Robotic Training Methods for Subtractive Manufacturing
doi https://doi.org/10.52842/conf.acadia.2017.164
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 164-169
summary This paper presents the initial developments of a method to train an adaptive robotic system for subtractive manufacturing with timber, based on sensor feedback, machine-learning procedures and material explorations. The methods were evaluated in a series of tests where the trained networks were successfully used to predict fabrication parameters for simple cutting operations with chisels and gouges. The results suggest potential benefits for non-standard fabrication methods and a more effective use of material affordances.
keywords design methods; information processing; construction; robotics; ai & machine learning; digital craft; manual craft
series ACADIA
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_234998 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002