CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 575

_id cf2017_042
id cf2017_042
authors Pinochet, Diego
year 2017
title Discrete Heuristics: Digital design and fabrication through shapes and material computation
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 42.
summary In the case of designers, architects and arts, tools are part of a repertoire of cognitive, symbolic, and semiotic artifacts with which each explores and learn about design problems. Nonetheless, when using digital fabrication tools, a dichotomy between what is ideated and what is made appears as an evident problem since many of the perceptual aspects of sensing and thinking about new things in the making are neglected. It is argued that this establishes a dichotomy between what is ideated and what is executed as an outcome from that idea. How designers can think, learn and augment their creativity by using digital tools in a more relational, exploratory, interactive and creative way? Furthermore, how can we teach design using contemporary fabrication tools beyond its representational capabilities? This paper explores the richness of using digital fabrication tools through the lens of shapes grammars as a design paradigm in order to extend computational making including digital fabrication tools, gestures and material behavior as crucial actors of the design process. Through the use of discrete heuristics - that is, the elaboration of deictic rules for computation with physical objects, materials and fabrication tools in a precise yet perceptual way- this paper shows experiments inside a third year design studio to overcome the hylomorphism present in the digital design and make dichotomy.
keywords Digital fabrication, Computational making, Human computer interaction, Shape grammars
series CAAD Futures
email
last changed 2017/12/01 14:37

_id ecaade2017_161
id ecaade2017_161
authors Pietri, Samuel and Erioli, Alessio
year 2017
title Fibrous Aerial Robotics - Study of spiderweb strategies for the design of architectural envelopes using swarms of drones and inflatable formworks
doi https://doi.org/10.52842/conf.ecaade.2017.1.689
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 689-698
summary This thesis research presents an integrated workflow for the design and fabrication of large-scale architectural envelopes using swarms of drones and inflatable structures as formworks. The work lies at the intersection of architecture, biology and robotics, incorporating generative design with digital fabrication techniques. The proposed approach aims to investigate the tectonic potential of computational systems which encode behavioral strategies inside an agent-based model. It is from local interactions taking place at the micro-scale of complex systems that a new set of architectural tendencies seem to emerge. The authors focused on the strategies developed by colonies of social spiders during the construction of three-dimensional webs. Their communication system and the characteristics of the material structure have been then modelled and translated in a digital environment. A physical fabrication process, in which the simulated agents become drones in a real world environment, was concurrently developed. The goal was to investigate the architectural possibilities given by an autonomous aerial machine depositing fibrous material over inflatable formworks and its potential usefulness in specific sites where overall conditions don't allow traditional construction techniques.
keywords tectonics; robotics; multi-agent systems; stigmergy; drones; inflatables
series eCAADe
email
last changed 2022/06/07 08:00

_id sigradi2017_001
id sigradi2017_001
authors Tanoue, Simone; Paulo Castral, Joubert Lancha
year 2017
title Oficina digital: Experiência projetual para a Tulha da Fazenda do Pinhal [Digital workshop: Project experience for the Tulha of Fazenda do Pinhal]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.16-20
summary The workshop was conceived as a laboratory of practices that articulate the exercise of the Project with the Digital Free Drawing to check the theoretical presuppositions of this research. It was intended to verify the limits of the analogical drawing in the digital platforms observing to directly influence of the drawing in the construction of the thought. The results allow us to point out that this is not a simple change of support but the possibility of a synergy between two logics of spellings, and the processes of cognition arising from such logics, in the teaching of Architecture Project.
keywords Digital free drawing; Pen display; Projective process; Graphic representation
series SIGRADI
email
last changed 2021/03/28 19:59

_id acadia17_18
id acadia17_18
authors Abdel-Rahman, Amira; Michalatos, Panagiotis
year 2017
title Magnetic Morphing
doi https://doi.org/10.52842/conf.acadia.2017.018
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 18-27
summary In an attempt to design shape-morphing multifunctional objects, this thesis uses programmable matter to design self-organizing multi-agent systems capable of morphing from one shape into another. The research looks at various precedents of self-assembly and modular robotics to design and prototype passive agents that could be cheaply mass-produced. Intelligence will be embedded into these agents on a material level, designing different local interactions to perform different global goals. The initial exploratory study looks at various examples from nature like plankton and molecules. Magnetic actuation is chosen as the external actuation force between agents. The research uses simultaneous digital and physical investigations to understand and design the interactions between agents. The project offers a systemic investigation of the effect of shape, interparticle forces, and surface friction on the packing and reconfiguration of granular systems. The ability to change the system state from a gaseous, liquid, then solid state offers new possibilities in the field of material computation, where one can design a "material" and change its properties on demand.
keywords material and construction; construction/robotics; smart materials; smart assembly/construction; simulation & optimization
series ACADIA
email
last changed 2022/06/07 07:52

_id acadia17_128
id acadia17_128
authors Bacharidou, Maroula
year 2017
title Touch, See, Make: Employing Active Touch in Computational Making
doi https://doi.org/10.52842/conf.acadia.2017.128
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 128-137
summary In architectural education and practice, we don’t come in physical contact with what we make until the later stages of the design process. This vision-oriented approach to design is something deeply rooted in architectural practice: from Alberti’s window to the screens of our computers, design has traditionally been more of a visual and less of a hands-on process. The vision of the presented study is that if we want to understand the way we make in order to improve tools for computational design and making, we need to understand how our ability to make things is enhanced by both our visual and tactile mechanisms. Bringing the notion of active touch from psychology into the design studio, I design and execute a series of experiments investigating how seeing, touching, or seeing and touching exhibit different sensory competencies, and how these competencies are expressed through the process of making. The subjects of the experiment are asked to tactilely, visually, or tactilely and visually observe a three-dimensional object, create descriptions of its composition, and to remake it based on their experience of it using plastic materials. After the execution of the experiment, I analyze twenty-one reproductions of the original object; I point to ways in which touch can detect scale and proportions more accurately than vision, while vision can detect spatial components more efficiently than touch; I then propose ways in which this series of experiments can lead to the creation of new design and making tools.
keywords education society & culture; computational / artistic culture;s hybrid practices; digital craft; manual craft
series ACADIA
email
last changed 2022/06/07 07:54

_id ijac201715101
id ijac201715101
authors Bieg, Kory and Clay Odom
year 2017
title Lumifoil and Tschumi: Virtual projections and architectural interventions
source International Journal of Architectural Computing vol. 15 - no. 1, 6-17
summary This article introduces the theoretical and technical framework for the design of a temporary rooftop canopy on the red generator—one of the buildings designed by Bernard Tschumi for the Florida International University School of Architecture. The project, Lumifoil, was designed using both top-down and bottom-up computational techniques, including surface modeling via projected geometries and scripted cellular subdivisions and assemblies. Lumifoil attempts to synthesize these two often-conflicting design approaches into a generative design process which leverages context, form, surface, and structure as affective and effective actors. Lumifoil is the result of a design methodology which is both active and reactive to existing conditions of the site and new opportunities afforded by the program. It is contextual in its top-down relationship to Tschumi’s existing building and theory, generative in how details emerge bottom-up through scripts which lack any reference to site, and emergent in the resulting synthetic processes and effects which are produced. Through this methodological development, the project both tracks and responds to popular architectural theory and design from the mid-1990s to today. The theoretical underpinnings of the project build upon the idea that the actual (the real-life physical manifestation of matter) and the virtual (the potential for an object to be) are two constantly shifting paradigms in which design processes can intervene to help develop an architectural solution from a range of possibilities. The technical aspect of the project includes the collaborative workflow between the architecture offices of OTA+ and studio MODO with Arup Engineers to resolve structural issues using parametric modeling tools and structural analysis software. The final project is entirely parametric and fabrication is completely automated.
keywords Tschumi, Parametric, Installation, Generative, Projection
series other
type normal paper
email
last changed 2019/08/02 08:16

_id caadria2017_055
id caadria2017_055
authors Caetano, In?s and Leit?o, António
year 2017
title Integration of an Algorithmic BIM Approach in a Traditional Architecture Studio
doi https://doi.org/10.52842/conf.caadria.2017.633
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 633-642
summary Algorithmic BIM combines BIM and Generative Design (GD), merging the potentialities of both approaches. In this paper we describe the design process of a set of parametric facades developed using Algorithmic-BIM, and how this approach was integrated into the design workflow of two architectural studios. We demonstrate how the integration of GD together with BIM influenced the whole design process and also the selection of the final solution. Some of the limitations found during the entire process are also addressed in the paper, such as tight deadlines and financial constraints. Finally, we explain the pros and cons of using this design method compared to a traditional BIM approach, and we discuss the implementation of this paradigm in a traditional design practice. This work was developed using Rosetta, an IDE for Generative Design that supports scripts using different programming languages and allows the generation and edition of 3D models in a variety of CAD and BIM applications. The result of this work is an information model of three parametric facades for a residential building, from which we can extract material quantities and construction performance tests.
keywords Generative design; collaborative design; CAD-BIM portability; parametric facade design
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia17_190
id acadia17_190
authors Coleman, James; Cole, Shannon
year 2017
title By Any Means Necessary: Digitally Fabricating Architecture at Scale
doi https://doi.org/10.52842/conf.acadia.2017.190
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 190-201
summary Architectural manufacturing is a balancing act between production facility and a custom fabrication shop. Each project Zahner takes on is different from the last, and not likely to repeat. This means that workflows are designed and deployed for each project individually. We present Flash Manufacturing, a fabrication methodology we employ in the production of architectural elements for cutting-edge and computationally sophisticated buildings. By remixing manufacturing techniques and production spaces we are able to meet the novel challenges posed by fabricating and assembling hundreds of thousands of unique parts. We discuss methods for producing vastly different project types and highlight two building case studies: the Cornell Tech Bloomberg Center and the Petersen Automotive Museum. With this work, we demonstrate how design creativity is no longer at odds with reliable and cost-effective building practices. Zahner has produced hundreds of seminal buildings working with architects such as: Gehry Partners, Zaha Hadid, m0rphosis, Herzog & de Meuron, OMA, Steven Holl Architects, Studio Daniel Libeskind, Rafael Moneo, DS+R, Foster + Partners, Gensler, KPF, SANAA and many more. This paper disrupts conventional discourse surrounding manufacturing/construction methods by discussing the realities of mass customization—how glossy architectural products are forged through ad hoc inventive engineering and risk tolerance.
keywords material and construction; fabrication; CAM; prototyping; construction; robotics
series ACADIA
email
last changed 2022/06/07 07:56

_id ecaade2017_116
id ecaade2017_116
authors Dickey, Rachel
year 2017
title Ontological Instrumentation in Architecture - A Collection of Prototypes Engaging Bodies and Machines from the Inside Out
doi https://doi.org/10.52842/conf.ecaade.2017.2.667
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 667-672
summary This paper provides a theoretical discourse on ontological instruments in design by exploring the ways in which design and technology might help get us back to an understanding of our own humanity. The intent of this theoretical discourse is to illuminate the possibilities of what can be, by looking at history as a way to see the world with perspective and as a predictor of what may happen. Another objective is to demonstrate the proof of those possibilities through the presentation of two design research projects which actualize those ideas. The first project is a prototype for an interactive chair that explores the calming effects of conscious and synchronized breathing. The second project is a reinterpretation of the veil and explores the relationship between the individual and the public. Both projects are artistic and performative in character and are embedded in a theoretical discourse on ontological instruments and investigate the opportunities of interaction of the human body with the environment moderated by technology.
keywords prosthesis; cyborgs; robots; technology; humanity; culture
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2017_101
id caadria2017_101
authors Dounas, Theodoros, Spaeth, Benjamin, Wu, Hao and Zhang, Chenke
year 2017
title Speculative Urban Types - A Cellular Automata Evolutionary Approach
doi https://doi.org/10.52842/conf.caadria.2017.313
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 313-322
summary The accelerated rate of urbanization in China is the motivator behind this paper. As a response to the observed monotonous housing developments in Suzhou Industrial Park (SIP) and elsewhere our method exploits Cellular Automata (CA) combined with fitness evaluation algorithms to explore speculatively the potential of building regulations for increased density and diversity through an automated design algorithm. The well-known Game of Life CA is extended from its original 2-dimensional functionality into the realm of three dimensions and enriched with the possibility of resizing the involved cells according to their function. Moreover our method integrates the "social condenser" as a means of diversifying functional distribution within the Cellular Automata as well as solar radiation as requested by the existing building regulation. The method achieves a densification of the development from 31% to 39% ratio of footprint to occupied volume whilst obeying the solar radiation rule and offering a more diverse functional occupation. This proof of concept demonstrates a solid approach to the automated design of housing developments at an urban scale with a ,yet limited, evaluation procedure including solar radiation which can be extended to other performance criteria in future work.
keywords integrated Speculation; Generative Urbanism; Cellular Automata
series CAADRIA
email
last changed 2022/06/07 07:55

_id cf2017_648
id cf2017_648
authors Dounas, Theodoros; Spaeth, A. Benjamin; Wu, Hao; Zhang, Chenke
year 2017
title Dense Urban Typologies and the Game of Life: Evolving Cellular Automata
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 648-666.
summary The ongoing rate of urbanization in China is the motivator behind this paper. As a response to the observed monotonous housing developments in Suzhou Industrial Park (SIP) and elsewhere our method exploits Cellular Automata (CA) combined with fitness evaluation algorithms to explore speculatively the potential of existing developments and respective building regulations for increased density and diversity through an automated design algorithm. The well-known Game of Life CA is extended from its original 2-dimensional functionality into the realm of three dimensions and enriched with the opportunity of resizing the involved cells according to their function. Moreover our method integrates an earlier technique of constrcuctivists namely the “social condenser” as a means of diversifying functional distribution within the Cellular Automata as well as solar radiation as requested by the existing building regulation. The method achieves a densification of the development from 31% to 39% ratio of footprint to occupied volume whilst obeying the solar radiation rule and offering a more diverse functional occupation. This proof of concept demonstrates a solid approach to the automated design of housing developments at an urban scale with a ,yet limited, evaluation procedure including solar radiation which can be extended to other performance criteria in future work.
keywords Evolutionary Design, Generative Urbanism, Integrated Strategy
series CAAD Futures
email
last changed 2017/12/01 14:38

_id acadia17_238
id acadia17_238
authors El-Zanfaly, Dina
year 2017
title A Multisensory Computational Model for Human-Machine Making and Learning
doi https://doi.org/10.52842/conf.acadia.2017.238
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 238-247
summary Despite the advancement of digital design and fabrication technologies, design practices still follow Alberti’s hylomorphic model of separating the design phase from the construction phase. This separation hinders creativity and flexibility in reacting to surprises that may arise during the construction phase. These surprises often come as a result of a mismatch between the sophistication allowed by the digital technologies and the designer’s experience using them. These technologies and expertise depend on one human sense, vision, ignoring other senses that could be shaped and used in design and learning. Moreover, pedagogical approaches in the design studio have not yet fully integrated digital technologies as design companions; rather, they have been used primarily as tools for representation and materialization. This research introduces a multisensory computational model for human-machine making and learning. The model is based on a recursive process of embodied, situated, multisensory interaction between the learner, the machines and the thing-in-the-making. This approach depends heavily on computational making, abstracting, and describing the making process. To demonstrate its effectiveness, I present a case study from a course I taught at MIT in which students built full-scale, lightweight structures with embedded electronics. This model creates a loop between design and construction that develops students’ sensory experience and spatial reasoning skills while at the same time enabling them to use digital technologies as design companions. The paper shows that making can be used to teach design while enabling the students to make judgments on their own and to improvise.
keywords education, society & culture; fabrication
series ACADIA
email
last changed 2022/06/07 07:55

_id ecaade2017_001
id ecaade2017_001
authors Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.)
year 2017
title ShoCK! – Sharing of Computable Knowledge!, Volume 2
doi https://doi.org/10.52842/conf.ecaade.2017.2
source ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, 760 p.
summary Internet of Things, pervasive nets, Knowledge ‘on tap’, Big Data, Wearable devices and the ‘Third wave’ of AI are disruptive technologies that are upsetting our globalised world as far as it can be foreseen from now. So academicians, professionals, researchers, innovation factories... are warmly invited to further shake up and boost our innovative and beloved CAAD world with new ideas, paradigms and points of view. Will our fine buildings and design traditions survive? Or, will they ‘simply’ be hybridized and enhanced by methods, techniques and CAAD tools? Obviously computation is needed to match the evergrowing performance requirements, but this is not enough to answer all these questions we have to deal with the essence of problems: improve design solutions for a better life. As life is not a matter of single individuals, we need to increase collaboration and to improve knowledge sharing. This means taking care of human beings, and involves a humanistic approach, and the long history of humankind ... from humans to thinking to technology ... and vice versa. A circle of human beings as eternal as our city.
series eCAADe
last changed 2022/06/07 07:49

_id ecaade2017_000
id ecaade2017_000
authors Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.)
year 2017
title ShoCK! – Sharing of Computable Knowledge!, Volume 1
doi https://doi.org/10.52842/conf.ecaade.2017.1
source ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, 770 p.
summary Internet of Things, pervasive nets, Knowledge ‘on tap’, Big Data, Wearable devices and the ‘Third wave’ of AI are disruptive technologies that are upsetting our globalised world as far as it can be foreseen from now. So academicians, professionals, researchers, innovation factories... are warmly invited to further shake up and boost our innovative and beloved CAAD world with new ideas, paradigms and points of view. Will our fine buildings and design traditions survive? Or, will they ‘simply’ be hybridized and enhanced by methods, techniques and CAAD tools? Obviously computation is needed to match the evergrowing performance requirements, but this is not enough to answer all these questions we have to deal with the essence of problems: improve design solutions for a better life. As life is not a matter of single individuals, we need to increase collaboration and to improve knowledge sharing. This means taking care of human beings, and involves a humanistic approach, and the long history of humankind ... from humans to thinking to technology ... and vice versa. A circle of human beings as eternal as our city.
series eCAADe
last changed 2022/06/07 07:49

_id ecaade2017_142
id ecaade2017_142
authors Gönenç Sorguç, Arzu, Kruºa Yemiºcio?lu, Müge, Özgenel, Ça?lar F?rat, Katipo?lu, Mert Ozan and Rasulzade, Ramin
year 2017
title The Role of VR as a New Game Changer in Computational Design Education
doi https://doi.org/10.52842/conf.ecaade.2017.1.401.2
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 401-408
summary With the rapid advances in technology, virtual reality(VR) re-emerged as an affordable technology providing new potentials for virtual learning environments(VLE). Within the scope of this study, firstly a general perspective on potentials of VR to create an appropriate VLE is put forward regarding the potentials related with learning modalities. Then, VR as a VLE in architectural education is discussed and utilization of VR is revisited considering the fundamentals of education as how to enhance skills regarding creativity, furnish students to adopt future skills and how VR can be used to enhance design understanding as well as space perception and spatial relations. It is deliberated that instead of mirroring the real spaces, allowing students to understand the virtuality with its own constituents will broaden the understanding of space, spatial relations, scale, motion, and time both in physical and virtual. The dichotomy between physical and virtual materiality, the potentials and pitfalls in the process of transformation from real/physical to virtual - virtual to real/physical are discussed in relation with the student projects designed in the scope of Digital Design Studio course in Middle East Technical University. It is also shown that VR stimulates different learning modalities especially kinesthetic modality and helping students to develop creativity and metacognition about space and spatial relations.
keywords computational design education; virtual reality; digital tools; virtual learning environment
series eCAADe
email
last changed 2022/06/07 07:50

_id cf2017_546
id cf2017_546
authors Hysa, Desantila; Özkar, Mine
year 2017
title Meno in the Studio: Design Computation in a Pedagogical Dialogue
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 546-562.
summary Competence in learning comprises combinations of knowledge, skills, and attitudes. Yet it is difficult to articulate and assess the learning objectives for attitudes. This paper focuses on the role of computation in providing an instrumental medium for attitude development and assessment in the design learning settings of the future. Our study draws from a passage on a mathematical inquiry in Plato’s Meno and makes a case of its aspects of visual reasoning and learning as reflection in action. Reporting on attitudes observed in an inquiry conducted with similar role play with foundational design students, we show that analog computation with visual rules supports the externalization of mental processes in basic design exercises and endorses beginning practices of accountable designing.
keywords Attitudes, Foundation Studio, Shape Rules
series CAAD Futures
email
last changed 2017/12/01 14:38

_id cf2017_360
id cf2017_360
authors Ofluo?lu, Salih
year 2017
title BIM-based Interdisciplinary Collaborations in a Student Project Competition
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 360-373.
summary Architecture is a profession that requires collaboration among professionals from various fields. Despite the important nature of these interdisciplinary collaborations, architecture students rarely obtain the opportunity to learn about the work areas of other stakeholders and the practice of working together. In all sectors there is a growing need for professionals who possess in-depth knowledge in their own disciplines and also develop an understanding about other related disciplines. In a setting of a student project competition, this article examines how students from various AEC fields collaborate using BIM as a common data environment and emphasizes several considerations for implementing interdisciplinary collaborations in curriculums of architecture schools in students’ perspective.
keywords Interdisciplinary Collaborations, Architectural Design Studio, BIM, Building Information Modeling
series CAAD Futures
email
last changed 2017/12/01 14:38

_id cf2017_229
id cf2017_229
authors Osório, Filipa; Paio, Alexandra; Oliveira, Sancho
year 2017
title Kinetic Origami Surfaces: From Simulation to Fabrication
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 229-248.
summary On nowadays social, technological and economic context everything changes constantly so there is the persistent need to adapt at all levels. This research defends that Architecture should do the same through the use of kinetic and interactive buildings, or elements in a building. These elements should allow the building to adapt to changing needs and conditions. This article describes the current state of an ongoing research that proposes the use of kinetic Rigid Origami foldable surfaces to be used as roofs for spaces with big spans and the practical contribution that the Design Studio Surfaces INPLAY has brought to it.
keywords Origami Geometry, Parametric Design, Kinetic Architecture, Digital Fabrication, Design Studio
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ecaade2017_066
id ecaade2017_066
authors Panagoulia, Eleanna
year 2017
title The role of Open Data in identifying and evaluating the Livability of Urban Space - Importance and Method
doi https://doi.org/10.52842/conf.ecaade.2017.1.495
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 495-504
summary The past decade has experienced a staggering rise of data-aided analysis that facilitate understanding the impact of socio-economic flux and socially oriented activities towards the quality and livability of space. Evaluating urban environments is not only important from the planners' perspective, but has larger implications for the residents themselves. In this paper we argue that the livability of a city or a neighborhood is not necessarily described by conventional, authoritative data, such as income, crime, education level etc., but the combination with ephemeral data layers, related to human perception and desire, can be more effective in capturing the dynamics of space. Implementing methods that are considered disassociated with urban analytics, we attempt to go beyond the conventions in understanding the dynamics that drive socio-economic phenomena and construct lived space. Our objective is to create methodologies of anticipating and evaluating urban environment by re-patterning different datasets and taking advantage of their combinatory potential.
keywords Livability; Data-aided Analysis; Open Data; Human Factor
series eCAADe
email
last changed 2022/06/07 08:00

_id ecaade2017_089
id ecaade2017_089
authors Petrš, Jan, Havelka, Jan, Florián, Miloš and Novák, Jan
year 2017
title MoleMOD - On Design specification and applications of a self-reconfigurable constructional robotic system
doi https://doi.org/10.52842/conf.ecaade.2017.2.159
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 159-166
summary The paper explores the use of in-house developed self-reconfigurable modular robotic system in civil construction activities and investigates a concept where an arbitrary Civil Engineering structure or a daily use industrial product are self-assembled from a number of self-reconfigurable composite blocks. The system extends current range of modular robot systems (mDrs) where autonomous modules self-assemble into a wide variety of forms. However, contrary to conventional mDrs, MoleMOD has not mechatronic actuating parts permanently fixed to each individual module. The MoleMOD actuators are separable and operate inside the modules, tight them together or relocate them to required configuration. It significantly reduces number of expensive mechatronics parts and the environment the actuators operate. Although MoleMOD focuses on architecture, it can take over other mDrs tasks as research and rescue. This paper describes properties, advantages, foreseen applications, and basic design specifications of the second generation prototype.
keywords Modular robotic systems; Mobile robotic systems; Adaptive architecture; MoleMOD; Smart materials and structures; Multi-robot systems
series eCAADe
email
last changed 2022/06/07 08:00

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_913564 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002