CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 558

_id caadria2017_155
id caadria2017_155
authors Cichocka, Judyta Maria, Browne, Will Neil and Rodriguez, Edgar
year 2017
title Optimization in the Architectural Practice - An International Survey
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 387-396
doi https://doi.org/10.52842/conf.caadria.2017.387
summary For several years great effort has been devoted to the study of Architectural Design Optimization (ADO). However, although in the recent years ADO has attracted much attention from academia, optimization methods and tools have had a limited influence on the architectural profession. The aim of the study is to reveal users' expectations from the optimization tools and define limitations preventing wide-spread adaptation of the optimization solvers in the architectural practice. The paper presents the results of the survey "Optimization in the architectural practice" conducted between December 2015 and February 2016 on 165 architectural trainees and practising architects from 34 countries. The results show that there is a need for an interactive multi-objective optimization tool, as 78% respondents declared that a multi-objective optimization is more necessary in their practice than a single objective one and 91% of them acknowledged the need for choice of promising solutions during optimization process. Finally, it has been found that daylight, structure and geometry are three top factors which architects are interested in optimizing.
keywords Architectural Design Optimization; Optimizaiton Techniques; Generic Solvers; Multi-criteria Decision Making
series CAADRIA
email
last changed 2022/06/07 07:56

_id cf2017_415
id cf2017_415
authors Tschetwertak, Julia; Schneider, Sven; Hollberg, Alexander; Donath, Dirk; Ruth, Jürgen
year 2017
title A Matter of Sequence: Investigating the Impact of the Order of Design Decisions in Multi-Stage Design Processes
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 415.
summary The design as a process is not a new topic in architecture, yet some theories are widely unexplored, such as the multi-stage decision-making (MD) process. This design method provides multiple solutions for one design problem and is characterized by design stages. By adding new building components in every stage, multiple solutions are created for each design solution from the previous stage. If the MD process is to be applied in architectural practice, fundamental and theoretical knowledge about it becomes necessary. This paper investigates the impact of sequence of design stages on the design solutions in the MD process. A basic case study provides the necessary data for comparing different sequences and gaining fundamental knowledge of the MD process. The study contains a parametric model for building generation, a parametric Life Cycle Assessment tool and an optimization mechanism based on Evolutionary Algorithms.
keywords Multi-stage decision-making process, Design process, Life Cycle Performance, Design Automation
series CAAD Futures
email
last changed 2017/12/01 14:38

_id acadia17_28
id acadia17_28
authors Aguiar, Rita; Cardoso, Carmo; Leit?o,António
year 2017
title Algorithmic Design and Analysis Fusing Disciplines
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 28-37
doi https://doi.org/10.52842/conf.acadia.2017.028
summary In the past, there has been a rapid evolution in computational tools to represent and analyze architectural designs. Analysis tools can be used in all stages of the design process, but they are often only used in the final stages, where it might be too late to impact the design. This is due to the considerable time and effort typically needed to produce the analytical models required by the analysis tools. A possible solution would be to convert the digital architectural models into analytical ones, but unfortunately, this often results in errors and frequently the analytical models need to be built almost from scratch. These issues discourage architects from doing a performance-oriented exploration of their designs in the early stages of a project. To overcome these issues, we propose Algorithmic Design and Analysis, a method for analysis that is based on adapting and extending an algorithmic-based design representation so that the modeling operations can generate the elements of the analytical model containing solely the information required by the analysis tool. Using this method, the same algorithm that produces the digital architectural model can also automatically generate analytical models for different types of analysis. Using the proposed method, there is no information loss and architects do not need additional work to perform the analysis. This encourages architects to explore several design alternatives while taking into account the design’s performance. Moreover, when architects know the set of design variations they wish to analyze beforehand, they can easily automate the analysis process.
keywords design methods; information processing; simulation & optimization; BIM; generative system
series ACADIA
email
last changed 2022/06/07 07:54

_id acadia17_52
id acadia17_52
authors Ajlouni, Rima
year 2017
title Simulation of Sound Diffusion Patterns of Fractal-Based Surface Profiles
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 52-61
doi https://doi.org/10.52842/conf.acadia.2017.052
summary Acoustical design is one of the most challenging aspects of architecture. A complex system of competing influences (e.g., space geometry, size, proportion, material properties, surface detail, etc.) contribute to shaping the quality of the auditory experience. In particular, architectural surfaces affect the way that sound reflections propagate through space. By diffusing the reflected sound energy, surface designs can promote a more homogeneous auditory atmosphere by mitigating sharp and focused reflections. One of the challenges with designing an effective diffuser is the need to respond to a wide band of sound wavelengths, which requires the surface profile to precisely encode a range of detail sizes, depths and angles. Most of the available sound diffusers are designed to respond to a narrow band of frequencies. In this context, fractal-based surface designs can provide a unique opportunity for mitigating such limitations. A key principle of fractal geometry is its multilevel hierarchical order, which enables the same pattern to occur at different scales. This characteristic makes it a potential candidate for diffusing a wider band of sound wavelengths. However, predicting the reflection patterns of complicated fractal-based surface designs can be challenging using available acoustical software. These tools are often costly, complicated and are not designed for predicting early sound propagation paths. This research argues that writing customized algorithms provides a valuable, free and efficient alternative for addressing targeted acoustical design problems. The paper presents a methodology for designing and testing a customized algorithm for predicting sound diffusion patterns of fractal-based surfaces. Both quantitative and qualitative approaches were used to develop the code and evaluate the results.
keywords design methods; information processing; simulation & optimization; data visualization
series ACADIA
email
last changed 2022/06/07 07:54

_id ecaade2017_038
id ecaade2017_038
authors Asanowicz, Aleksander
year 2017
title Parametric design - Tool, medium or new paradigm?
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 379-386
doi https://doi.org/10.52842/conf.ecaade.2017.2.379
summary Parametric design is an emerging research issue in the design domain. However, discussions about the creative process in parametric design are limited. What is more, despite the passing of 57 years of parametric design's existence we still do not know what parametric design is. Is it a simple tool, which is useful in some kind of optimization of the architectural form, or it is a medium, which helps architects develop unexpected solutions, and perhaps this is already a new design paradigm? The presented paper will contain general considerations relating to the nature of parametric design, the history of which starts in 1960, when D.T. Ross has formulated the thesis that our main objective is to formulate constrains and all needed parameters of the solved problem.Please write your abstract here by clicking this paragraph.
keywords optimisation; parametric design; design tool; design media
series eCAADe
email
last changed 2022/06/07 07:54

_id cf2017_667
id cf2017_667
authors Cichocka, Judyta; Migalska, Agata; Browne, Will N.; Rodriguez, Edgar
year 2017
title SILVEREYE– the implementation of Particle Swarm Optimization algorithm in a design optimization tool
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 667.
summary Engineers and architects are now turning to use computational aids in order to analyze and solve complex design problems. Most of these problems can be handled by techniques that exploit Evolutionary Computation (EC). However existing EC techniques are slow [8] and hard to understand, thus disengaging the user. Swarm Intelligence (SI) relies on social interaction, of which humans have a natural understanding, as opposed to the more abstract concept of evolutionary change. The main aim of this research is to introduce a new solver Silvereye, which implements Particle Swarm Optimization (PSO) in the Grasshopper framework, as the algorithm is hypothesized to be fast and intuitive. The second objective is to test if SI is able to solve complex design problems faster than ECbased solvers. Experimental results on a complex, single-objective high-dimensional benchmark problem of roof geometry optimization provide statistically significant evidence of computational inexpensiveness of the introduced tool.
keywords Architectural Design Optimization (ADO), Particle Swarm Optimization (PSO), Swarm Intelligence (SI), Evolutionary Computation (EC), Structural Optimization
series CAAD Futures
email
last changed 2017/12/01 14:38

_id cf2017_128
id cf2017_128
authors Dietrich, Sebastian; Schneider, Sven; Demin, Dimitry
year 2017
title RhinoRstab: Introducing and Testing a New Structural Analysis Plugin for Grasshopper3D
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 128-136.
summary This paper presents a new open-source structural analysis plugin for Grasshopper – RhinoRstab. The plugin bridges data between the worldwide established software: Rhinoceros3d and Dlubal RSTAB. The basic idea behind the approach is to create an interactive workflow between the architectural design on the one hand and a structural analysis tool on the other hand. In contrast to RhinoRstab, other analysis tools for Grasshopper predict the structural behaviour independent of its structural capacity. Thus, additional standalone software is necessary to verify the analysis of these plugins subsequently. To test the validity of this new tool, it is compared to a similar application, namely Karamba (a widely used structural analysis plugin for Rhinoceros/Grasshopper). Both tools are tested in different scenarios. The study shows that for some elements in a structural system and some calculation methods RhinoRstab and Karamba results differ strongly. However, regarding the runtime, Karamba operates faster than RhinoRstab.
keywords Automation, Structural Analysis, Structural Design, Optimization
series CAAD Futures
email
last changed 2017/12/01 14:37

_id cf2017_137
id cf2017_137
authors Ensari, Elif; Kobas, Bilge; Sucuo?lu, Can
year 2017
title Computational Decision Support for an Airport Complex Roof Design: A Case Study of Evolutionary Optimization for Daylight Provision and Overheating Prevention
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 137-149.
summary This study focuses on generating geometric design alternatives for an airport roof structure with an evolutionary design method based on optimizing solar heat gain and daylight levels. The method incorporates a parametric 3D model of the building, a multi objective genetic algorithm that was linked with the model to iteratively test for various geometric solutions, a custom module that was developed to simulate solar conditions, and external energy simulation environments that was used to validate the outcomes. The integral outcome was achieved through an iterative workflow of many software tools, and the study is significant in dealing with several space typologies at the same time, taking real-life constraints such as applicability, ease of operation, construction loads into consideration, and satisfying design and aesthetic requirements of the architectural design team.
keywords Evolutionary algorithms, daylight and energy performance, multi-objective optimization
series CAAD Futures
email
last changed 2017/12/01 14:37

_id cf2017_457
id cf2017_457
authors Erdine, Elif; Kallegias, Alexandros; Lara Moreira, Angel Fernando; Devadass, Pradeep; Sungur, Alican
year 2017
title Robot-Aided Fabrication of Interwoven Reinforced Concrete Structures
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 457.
summary This paper focuses on the realization of three-dimensionally interwoven concrete structures and their design process. The output is part of an ongoing research in developing an innovative strategy for the use of robotics in construction. The robotic fabrication techniques described in this paper are coupled with the computational methods dealing with geometry rationalization and material constraints among others. By revisiting the traditional bar bending techniques, this research aims to develop a novel approach by the reduction of mechanical parts for retaining control over the desired geometrical output. This is achieved by devising a robotic tool-path, developed in KUKA|prc with Python scripting, where fundamental material properties, including tolerances and spring-back values, are integrated in the bending motion methods via a series of mathematical calculations in accord with physical tests. This research serves to demonstrate that robotic integration while efficient in manufacturing it also retains valid alignment with the architectural design sensibility.
keywords Robotic fabrication, Robotic bar bending, Concrete composite, Geometry optimization, Polypropylene formwork
series CAAD Futures
email
last changed 2017/12/01 14:38

_id cf2017_180
id cf2017_180
authors Jun, Ji Won; Silverio, Matteo; Llubia, Josep Alcover; Markopoulou, Areti; Chronis; Angelos; Dubor, Alexandre
year 2017
title Remembrane: A Shape Changing Adaptive Structure
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 180-198.
summary This paper presents a research on adaptive kinetic structures using shape memory alloys as actuators. The target of the research is designing and building an efficient kinetic structural system that could be potentially applied at an architectural scale. The project is based on the study of tensegrity and pantograph structures as a starting point to develop multiple digital and physical models of different structural systems that can be controllably moved. The result of this design process is a performative prototype that is controllable through a web-based interface. The main contribution of this project is not any of the presented parts by themselves but the integration of all of them in the creation of a new adaptive system that allows us to envision a novel way of designing, building and experiencing architecture in a dynamic and efficient way.
keywords Responsive Structures, Kinetic Structures, Adaptive Systems, User Interaction, Structural Optimization
series CAAD Futures
email
last changed 2017/12/01 14:38

_id acadia17_340
id acadia17_340
authors Landim, Gabriele; Digiandomenico, Dyego; Amaro, Jean; Pratschke, Anja; Tramontano, Marcelo; Toledo, Claudio
year 2017
title Architectural Optimization and Open Source Development: Nesting and Genetic Algorithms
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 340- 349
doi https://doi.org/10.52842/conf.acadia.2017.340
summary This research presents a general overview of performance-oriented architectural design and how the rise of parametric modeling and algorithm-aided design enable an integrated environment for project design, simulation and optimization. For optimization processes, one of the most used methods in architectural problem solving is genetic algorithms (GAs). However, as the use of GAs becomes more common in the architecture, it is possible to identify a lack of clarity about the methods and procedures operated by the algorithms. Thus, this research seeks to contribute to the field through the implementation of an open source optimization plugin whose method of implemented algorithms, a GA and a nesting algorithm, can be accessed for evaluation, improvement and adaptation to other architectural problems. In the same way, it discusses the relevance of the openness and clarity of the methods employed in optimization processes in architecture. The proposed plugin was tested in an experiment that verified the feasibility of the development of the open source plugin and the efficiency of the method in solving the chosen architectural problem.
keywords algorithm-aided design; optimization; genetic algorithm; nesting; open source; computational / artistic cultures; generative system; simulation & optimization; design methods; information processing
series ACADIA
email
last changed 2022/06/07 07:52

_id caadria2017_104
id caadria2017_104
authors Lu, Xiao, Dounas, Theodoros, Spaeth, Benjamin, Bissoonauth, Chitraj and Galobardes, Isaac
year 2017
title Robotic Simulation of Textile as Concrete Reinforcement and Formwork
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 863-872
doi https://doi.org/10.52842/conf.caadria.2017.863
summary New possibilities of concrete constructions in architecture, the traditional formwork can be gradually replaced by the use of flexible textile. At the same time textile reinforcement combined with fabric formwork, introduces an innovative integrated solution in the fabrication of concrete. Based on a simple understanding of the textile weaving and knitting techniques, this project concentrates on the architectural production and the structural optimization of the textile as both concrete reinforcement and formwork. Furthermore, we present a robotic simulation of the process that develops using a series of computational experiments to research the sequence of weaving and/or knitting. Through the computational process and the design simulations, the research is firmly rooted in analog and digital exploration of material and its implementation in architecture, with particular emphasis on the convergence of robotics and computation. Note that the paper deals mainly with the software and weaving simulation as part of a larger research project, without dealing with the production of physical artefacts.
keywords robotic weaving; textile-reinforcement; parametric design; lightweight structure; textile-reinforced concrete
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2017_058
id caadria2017_058
authors Miao, Yufan, Koenig, Reinhard, Buš, Peter, Chang, Mei-Chih, Chirkin, Artem and Treyer, Lukas
year 2017
title Empowering Urban Design Prototyping   - A Case Study in Cape Town with Interactive Computational Synthesis Methods 
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 407-416
doi https://doi.org/10.52842/conf.caadria.2017.407
summary Although Cape Town city in South Africa is generally regarded as the most stable and prosperous city in the region, there are still approximately 7.5 million people living in informal settlements and about 2.5 million housing units are needed. This motivates the so-called Empower Shack project, aiming to develop upgrading strategies for these informal settlements. To facilitate the fulfillment of this project, urban design prototyping tools are researched and developed with the capabilities for fast urban design synthesis. In this paper we present a computational method for fast interactive synthesis of urban planning prototypes. For the generation of mock-up urban layouts, one hierarchical slicing structure, namely, the slicing tree is introduced to abstractly represent the parcels, as an extension of the existing generative method for street network. It has been proved that our methods can interactively assist the urban planning process in practice. However, the slicing tree data structure has several limitations that hinder the further improvement of the generated urban layouts. In the future, the development of a new data structure is required to fulfill urban synthesis for urban layout generation with Evolutionary Multi-objective Optimization methods and evaluation strategies should be developed to verify the generated results.
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia17_436
id acadia17_436
authors Nagy, Danil; Villaggi, Lorenzo; Zhao, Dale; Benjamin, David
year 2017
title Beyond Heuristics: A Novel Design Space Model for Generative Space Planning in Architecture
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 436- 445
doi https://doi.org/10.52842/conf.acadia.2017.436
summary This paper proposes a novel design space model that can be used in applications of generative space planning in architecture. The model is based on a novel data structure that allows fast subdivision and merge operations on planar regions in a floor plan. It is controlled by a relatively small set of input parameters and evaluated for performance using a set of congestion metrics, which allows it to be optimized by a metaheuristic such as a genetic algorithm (GA). The paper also presents a set of guidelines and methods for analyzing and visualizing the quality of the model through low-resolution sampling of the design space. The model and analysis methods are demonstrated through an application in the design of an exhibit hall layout. The paper concludes by speculating on the potential of such models to disrupt the architectural profession by allowing designers to break free of common "heuristics" or rules of thumb and explore a wider range of design options than would be possible using traditional methods.
keywords design methods; information processing; simulation & optimization; generative system; data visualization
series ACADIA
email
last changed 2022/06/07 07:59

_id ecaade2017_051
id ecaade2017_051
authors Salkini, Hadya, Swaid, Bashar, Greco, Laura and Lucente, Roberta
year 2017
title Emerging an Adaptive Kinetic Mashrabia for Reviving the Environmental Responsive in the Traditional Courtyard House of Aleppo
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 299-308
doi https://doi.org/10.52842/conf.ecaade.2017.1.299
summary Abstract:Due to the widespread of computational processes techniques, many manuals and modern automatic shading systemshave been developed. Although, of their high environmental performance, most of these systems failed to adapt neitherto the morphological configuration nor to the special character of the historical contexts. Thus, empowerment the roleof the bio-climatic design process in reconstructing the courtyard house in Aleppo post-war requires translating theform and structure of the vernacular architectural elements into adaptive and dynamic ones, for emerging newinnovative solutions with high environmental responsive. The research adopts this hypothesis for developing a newshading screen system with a kinetic structure technique. An evolutionary multi-criteria optimization for geneticalgorithm technique is used and integrated with bio-climatic tools such as Ladybug and Honeybee plug-ins forGrasshopper and Rhino software, for obtaining the optimum adaptive kinetic Mashrabia that enables reviving theenvironmental responsive in the traditional courtyard house of Aleppo post-war.
keywords Keywords: Parametric Design, Environmental Responsive, Adaptive Kinetic Structure.
series eCAADe
email
last changed 2022/06/07 08:00

_id acadia17_610
id acadia17_610
authors Thariyan, Elizabeth; Beorkrem, Christopher; Ellinger, Jefferson
year 2017
title Buildable Performance Envelopes: Optimizing Sustainable Design in a Pre-Design Phase
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 610- 619
doi https://doi.org/10.52842/conf.acadia.2017.610
summary The growing consciousness regarding ecologically conscious architecture mandates a deeper understanding of the strategies that may be adopted by designers towards achieving this goal. With the advent of building information modelling (BIM) and the associated paradigm shift in the design process, it has become increasingly possible to make informed decisions earlier on in the design process. Despite this advancement, the architectural realm continues to lack computational resources that are capable of providing formal guidelines, through a generative process, that serve as a starting point for sustainable design. Towards overcoming this limitation, this paper will describe a computational tool that generates buildable performance envelopes in response to aspects of a site that are influential in designing sustainably: climate and context. These envelopes are created in a generative manner through the utilization of a voxel (three-dimensional pixel) matrix, which continually updates itself based on formal elements created by the user. Facilitating the process of making ecologically conscious design decisions at the earliest stages of design, which is the primary goal of this tool, more substantially increases the achieved energy optimization. Illustrative building designs presented in the paper resulting from the testing of this tool in contrasting climate zones, such as Miami, Florida (ASHRAE Zone 01) and Aspen, Colorado (ASHRAE Zone 07), confirms the assertion that the performance envelopes generated with this tool serve only as a guideline for optimized sustainable design, and not as the final form of the building itself.
keywords design methods; information processing; BIM; simulation & optimization; form finding
series ACADIA
email
last changed 2022/06/07 07:58

_id acadia17_630
id acadia17_630
authors Vasanthakumar, Saeran; Saha, Nirvik; Haymaker, John; Shelden, Dennis
year 2017
title Bibil: A Performance-Based Framework to Determine Built Form Guidelines
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 630- 639
doi https://doi.org/10.52842/conf.acadia.2017.630
summary City built-form guidelines act as durable constraints on building design decisions. Such guidelines directly impact energy, comfort and other performance conditions. Existing urban design and planning methods only consider a narrow range of potential design scenarios, with rudimentary performance criteria, resulting in suboptimal urban designs. Bibil is a software plugin for the Rhinoceros3D/Grasshopper3D CAD modeler that addresses this gap through the synthesis of design space exploration methods to help design teams optimize guidelines for environmental and energy performance criteria over the life cycle of the city. Bibil consists of three generative and data management modules. The first module simulates development scenarios from street and block information through time, the second designs appropriate architectural typology, and the third abstracts the typologies into a lightweight analysis model for detailed thermal load and energy simulation. State-of-the-art performance simulation is done via the Ladybug Analysis Tools Grasshopper3D plugin, and further bespoke analysis to explore the resulting design space is achieved with custom Python scripts.This paper first introduces relevant background for automated exploration of urban design guidelines. Then the paper surveys the state-of-the-art in design and performance simulation tools in the urban domain. Next the paper describes the beta version of the tool’s three modules and its application in a built form study to assess urban canyon performance in a major North American city. Bibil enables the exploration of a broader range of potential design scenarios, for a broader range of performance criteria, over a longer period of time.
keywords design methods; information processing; simulation & optimization; form finding; generative system
series ACADIA
email
last changed 2022/06/07 07:58

_id ijac201715205
id ijac201715205
authors Wang, Tsung-Hsien; Olivia Espinosa Trujillo, Wen-Shao Chang and Bailin Deng
year 2017
title Encoding bamboo’s nature for freeform structure design
source International Journal of Architectural Computing vol. 15 - no. 2, 169-182
summary Bamboo is a construction material that is renewable, environmentally friendly and widely available. It has long been used in various projects, ranging from temporary, easily assembled and rectilinear structures to complex freeform pavilions. Design with bamboo has never been easy to architects and engineers due to its irregular shape and round section. This prompts the need to develop a new design process that can accommodate those properties that hinder bamboo to be used by designers. In this article, we take a close look at freeform structure design and specifically demonstrate how systematically and algorithmically parametric modelling can be used to tackle bamboo material irregularities and bamboo jointing challenges. A two-stage optimization process is proposed to support a fabricable freeform structure design through encoding material properties and freeform shape optimization. The approach approximates the given freeform shape using a finite set of unique bamboo elements while maintaining the aesthetic design intention. By limiting the number of bamboo elements, it will provide insight to both designers and engineers on the efficiency and cost benefits of producing required structure elements for the final assembly.
keywords Freeform structure design, bamboo structures, bamboo joint design, shape optimization, shape rationalization
series other
type normal paper
email
last changed 2019/08/02 08:31

_id ijac201715103
id ijac201715103
authors Wortmann, Thomas
year 2017
title Surveying design spaces with performance maps: A multivariate visualization method for parametric design and architectural design optimization
source International Journal of Architectural Computing vol. 15 - no. 1, 38-53
summary This article presents a method to visualize high-dimensional parametric design spaces with applications in computational design processes and interactive optimization. The method extends Star Coordinates using a triangulation-based interpolation with Barycentric Coordinates. It supports the understanding of design problems in architectural design optimization by allowing designers to move between a high-dimensional design space and a low-dimensional Performance Map. This Performance Map displays the characteristics of the fitness landscape, develops designers’ intuitions about the relationships between design parameters and performance, allows designers to examine promising design variants, and delineates promising areas for further design exploration.
keywords Fitness landscape, design space exploration, multivariate visualization, optimization, Star Coordinates
series other
type normal paper
email
last changed 2019/08/02 08:25

_id caadria2017_124
id caadria2017_124
authors Wortmann, Thomas
year 2017
title Opossum - Introducing and Evaluating a Model-based Optimization Tool for Grasshopper
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 283-292
doi https://doi.org/10.52842/conf.caadria.2017.283
summary This paper presents Opossum, a new optimization plug-in for Grasshopper, a visual data-flow modelling software popular among architects. Opossum is the first publicly available, model-based optimization tool aimed at architectural design optimization and especially applicable to problems that involve time-intensive simulations of for example day-lighting and building energy. The paper details Opossum's design and implementation and compares its performance to four single-objective and one multi-objective solver. The test problem is time-intensive and simulation-based: optimizing a screened façade for daylight and glare. Opossum outperforms the other single-objective solvers and finds the most accurate approximation of the Pareto front.
keywords Design Tool; Architectural Design Optimization; Model-based Optimization; Sustainable Design
series CAADRIA
email
last changed 2022/06/07 07:57

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_373370 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002