CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 575

_id caadria2018_209
id caadria2018_209
authors Yao, Jiawei, Lin, Yuqiong, Zhao, Yao, Yan, Chao, Li, Changlin and Yuan, Philip F.
year 2018
title Augmented Reality Technology based Wind Environment Visualization
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 369-377
doi https://doi.org/10.52842/conf.caadria.2018.1.369
summary Considering the outdoor environment at the initial stage of design process plays a significant role on future building performance. Augmented Reality (AR) technology applied in this research can integrate real world building morphology information and virtual world ventilation information seamlessly that rapidly and directly provides designers information for observation and evaluation. During the case study of "2017 Shanghai DigitalFUTURE" summer workshop, a research on augmented reality technology based wind environment visualization was carried on. The achievement with an application software not only showed the geometric information of the real world objects (such as buildings), but also the virtual wind environment has displayed. Thus, these two kinds of information can complement and superimpose each other. This AR technology based software brings multiple synthetic together, which can (1) visualize the air flow around buildings that provides designers rapid and direct information for evaluation; (2) deal with wind-environment-related data quantitatively and present in an intuitive, easy-to-interpret graphical way; and (3) be further developed as a visualization system based on built-in environments in the future, which contributes to rapid evaluation of a series of programs at the beginning of the building design.
keywords Environment visualization; Augmented reality technology; Fast response; Outdoor ventilation
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2017_053
id ecaade2017_053
authors Gül, Leman Figen
year 2017
title Studying Architectural Massing Strategies in Co-design - Mobile Augmented Reality Tool versus 3D Virtual World
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 703-710
doi https://doi.org/10.52842/conf.ecaade.2017.2.703
summary Researchers attempt to offer new design tools and technologies to support design process facilitating alternative visualization and representation techniques. This paper describes a comparison study that took place in the Department of Architecture, at the Istanbul Technical University between 2016-2017. We compare when architects designed mass volumes of buildings in an marker-based mobile Augmented Reality (AR) application with that of when they used a collaborative 3D Virtual World. The massing strategy in the AR environment was an additive approach that is to collaboratively design the small parts to make the whole. Alignment and arrangement of the parts were not the main concerns of the designers in AR, instead the functional development of the design proposal, bodily engagements with the design representation, framing and re-framing of the given context and parameters become the discussion topics.
keywords Augmented reality, virtual world, massing strategies; protocol analysis
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2019_626
id caadria2019_626
authors Hahm, Soomeen, Maciel, Abel, Sumitiomo, Eri and Lopez Rodriguez, Alvaro
year 2019
title FlowMorph - Exploring the human-material interaction in digitally augmented craftsmanship
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 553-562
doi https://doi.org/10.52842/conf.caadria.2019.1.553
summary It has been proposed that, after the internet age, we are now entering a new era of the '/Augmented Age/' (King, 2016). Physician Michio Kaku imagined the future of architects will be relying heavily on Augmented Reality technology (Kaku, 2015). Augmented reality technology is not a new technology and has been evolving rapidly. In the last three years, the technology has been applied in mainstream consumer devices (Coppens, 2017). This opened up possibilities in every aspect of our daily lives and it is expected that this will have a great impact on every field of consumer's technology in near future, including design and fabrication. What is the future of design and making? What kind of new digital fabrication paradigm will emerge from inevitable technological development? What kind of impact will this have on the built environment and industry? FlowMorph is a research project developed in the Bartlett School of Architecture, B-Pro AD with the collaboration of the authors and students as a 12 month MArch programme, we developed a unique design project trying to answer these questions which will be introduced in this paper.
keywords Augmented Reality, Mixed Reality, Virtual Reality, Design Augmentation, Digital Fabrication, Cognition models, Conceptual Designing, Design Process, Design by Making, Generative Design, Computational Design, Human-Machine Collaboration, Human-Computer Collaboration, Human intuition in digital fabrication
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia17_330
id acadia17_330
authors Krietemeyer, Bess; Bartosh, Amber; Covington, Lorne
year 2017
title Shared Realities: A Method for Adaptive Design Incorporating Real-Time User Feedback using Virtual Reality and 3D Depth-Sensing Systems
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 330- 339
doi https://doi.org/10.52842/conf.acadia.2017.330
summary When designing interactive architectural systems and environments, the ability to gather user feedback in real time provides valuable insight into how the system is received and ultimately performs. However, physically testing or simulating user behavior with an interactive system outside of the actual context of use can be challenging due to time constraints and assumptions that do not reflect accurate social, behavioral, or environmental conditions. Employing evidence based, user-centered design practices from the field of human–computer interaction (HCI) coupled with emerging architectural design methodologies creates new opportunities for achieving optimal system performance and design usability for interactive architectural systems. This paper presents a methodology for developing a mixed reality computational workflow combining 3D depth sensing and virtual reality (VR) to enable iterative user-centered design. Using an interactive museum installation as a case study, user pointcloud data is observed via VR at full scale and in real time for a new design feedback experience. Through this method, the designer is able to virtually position him/herself among the museum installation visitors in order to observe their actual behaviors in context and iteratively make modifications instantaneously. In essence, the designer and user effectively share the same prototypical design space in different realities. Experimental deployment and preliminary results of the shared reality workflow are presented to demonstrate the viability of the method for the museum installation case study and for future interactive architectural design applications. Contributions to computational design, technical challenges, and ethical considerations are discussed for future work.
keywords design methods; information processing; hci; VR; AR; mixed reality; computer vision
series ACADIA
email
last changed 2022/06/07 07:52

_id caadria2017_085
id caadria2017_085
authors Lee, Yong-Ju, Kim, Mi-Kyoung and Jun, Han-Jong
year 2017
title Green Standard for Energy and Environmental Design - The Development of an Assessment System Based on a Green BIM Template
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 623-632
doi https://doi.org/10.52842/conf.caadria.2017.623
summary To construct a building that meets the requirements of certification in terms of environmental friendliness, there must be a process that considers the certification criteria from the initial design phase. However, there are numerous complicated task performance procedures to analyse many required items in detail as well as perceive and apply the data requirements efficiently. Currently, Building Information Modeling (BIM) is gaining attention as a solution for environmental problems in architecture. BIM shows precisely how a virtual building is modelled in the real world, thereby providing an objective information and analysis through a simulation. However, the result values of BIM library or modelling may turn out differently as a result of the work environment of designers or users that is not standardized. Therefore, this study applies the modelled and extracted BIM data using the template and library established in the BIM add-in planning and design phase to review in advance the Green Standard for Energy and Environmental Design (G-SEED) assessment by item and manual input of users with the BIM-based (add-in) G-SEED assessment system, thereby providing support to enable users to establish specific strategies in designing green buildings.
keywords GBT; G-SEED; BIM System; BIM Add-in; Apartment
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia17_110
id acadia17_110
authors Arnowitz, Ethan; Morse, Christopher; Greenberg, Donald P.
year 2017
title vSpline: Physical Design and the Perception of Scale in Virtual Reality
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 110-117
doi https://doi.org/10.52842/conf.acadia.2017.110
summary Virtual reality provides a heightened sense of immersion and spatial awareness that provides a unique opportunity for designers to perceive and evaluate scale and space. At the same time, traditional sketches and small-size physical models provide tactile feedback that allow designers to create, comprehend, and explore complex geometric relationships. Through the development of vSpline, a modeling application for virtual reality, we explore the potential for design within a virtual spatial environment to blur the boundaries between digital and physical stages of design, and seek to combine the best of both virtual and analog worlds. By using spline-based closed meshes created directly in three-dimensional space, our software provides the capabilities to design, modify, and save the information in the virtual world and seamlessly convert the data to evaluate the printing of 3D physical models. We identify and discuss important questions that arise regarding relationships of perception of scale, digital-to-physical domains, and new methods of input and manipulation within a 3D immersive space.
keywords design methods; information processing; hci; vr; ar; mixed reality; digital craft; manual craft
series ACADIA
email
last changed 2022/06/07 07:54

_id ecaade2017_208
id ecaade2017_208
authors Beaudry Marchand, Emmanuel, Han, Xueying and Dorta, Tomás
year 2017
title Immersive retrospection by video-photogrammetry - UX assessment tool of interactions in museums, a case study
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 729-738
doi https://doi.org/10.52842/conf.ecaade.2017.2.729
summary Studying interactions in museums often omits to consider the complexity of the space and the visitors' behaviors. Visitors' walking paths do not provide enough insight of their user experience (UX) since they are distant from the experiential realities. Videogrammetry can convey such dimensions of an environmental experience. Because of limitations of real-time playback, a twofold approach is suggested: "immersive videos" combined with "photogrammetric models". A granular optimal experience assessment method using retrospection interviews is also applied providing a finer evaluation of the perceived experience through time. This method permits to characterize museum interactive installations, according to the perceived challenges and skills of the interaction's task, based this time on immersive retrospection. This paper proposes the "Immersive retrospection" by "Immersive video-photogrammetry" as a UX assessment tool of interactions in museums. A hybrid virtual environment was used in this study, allowing social VR without the use of headsets, through a life-sized projection of interactive 3D content. The study showed that Immersive video-photogrammetry facilitates the recall of memories and allows a deepened self-observation analysis.
keywords immersive retrospection; photogrammetry; videogrammetry; UX assessment; museum environments
series eCAADe
email
last changed 2022/06/07 07:54

_id ijac201715101
id ijac201715101
authors Bieg, Kory and Clay Odom
year 2017
title Lumifoil and Tschumi: Virtual projections and architectural interventions
source International Journal of Architectural Computing vol. 15 - no. 1, 6-17
summary This article introduces the theoretical and technical framework for the design of a temporary rooftop canopy on the red generator—one of the buildings designed by Bernard Tschumi for the Florida International University School of Architecture. The project, Lumifoil, was designed using both top-down and bottom-up computational techniques, including surface modeling via projected geometries and scripted cellular subdivisions and assemblies. Lumifoil attempts to synthesize these two often-conflicting design approaches into a generative design process which leverages context, form, surface, and structure as affective and effective actors. Lumifoil is the result of a design methodology which is both active and reactive to existing conditions of the site and new opportunities afforded by the program. It is contextual in its top-down relationship to Tschumi’s existing building and theory, generative in how details emerge bottom-up through scripts which lack any reference to site, and emergent in the resulting synthetic processes and effects which are produced. Through this methodological development, the project both tracks and responds to popular architectural theory and design from the mid-1990s to today. The theoretical underpinnings of the project build upon the idea that the actual (the real-life physical manifestation of matter) and the virtual (the potential for an object to be) are two constantly shifting paradigms in which design processes can intervene to help develop an architectural solution from a range of possibilities. The technical aspect of the project includes the collaborative workflow between the architecture offices of OTA+ and studio MODO with Arup Engineers to resolve structural issues using parametric modeling tools and structural analysis software. The final project is entirely parametric and fabrication is completely automated.
keywords Tschumi, Parametric, Installation, Generative, Projection
series other
type normal paper
email
last changed 2019/08/02 08:16

_id caadria2017_056
id caadria2017_056
authors Carreiro, Miguel, Andrade, Marina A. P. and Sales Dias, Miguel
year 2017
title Cognition and Evaluation of Architecture Environments Based on Geometric Contour References and Aesthetic Judgements
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 581-590
doi https://doi.org/10.52842/conf.caadria.2017.581
summary This paper presents the outline and the achieved results of an experimental study developed to understand the differences on how close architecture spaces with distinct geometric characteristics at contour level, including rounded, curvilinear and sharp, rectilinear elements, are perceived and evaluated. In order to do so, eighteen virtual reality architecture spaces were evaluated by thirty-two test-subjects according to like/dislike aesthetic judgments. As expected, the tested subjects showed a higher level of preference for spaces with rounded, curvilinear contour elements. On another way, when the level of space curvature was high, considering the whole space surface and not only the contour of plan transitions, the level of preference decreased significantly. These results support the idea that rounded, curvilinear elements are interpreted as being more pleasant and preferred than sharp, rectilinear ones and create new knowledge on the how the levels of such preference are more accurate for moderate rather than radical curvature rates.
keywords Geometric contour; Architecture space environment; Curve, rounded, angular and rectilinear; aesthetic judgement; experimental study.
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2017_244
id ecaade2017_244
authors Chaltiel, Stephanie, Bravo, Maite and Chronis, Angelos
year 2017
title Digital fabrication with Virtual and Augmented Reality for Monolithic Shells
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 211-218
doi https://doi.org/10.52842/conf.ecaade.2017.2.211
summary The digital fabrication of monolithic shell structures is presenting some challenges related to the interface between computational design and fabrication techniques, such as the methods chosen for the suitable parametrization of the geometry based on materiality characteristics and construction constrains, the digital optimization criteria of variables, and the translation of the relevant code used for digital fabrication. Specifically, the translation from the digital to the physical when a definite materiality appears during the digital fabrication process proves to be a crucial step, which is typically approached as a linear and predetermined sequence. This often-difficult step offers the potential of embedding a certain level of interactivity between the fabricator and the materialized model during the fabrication process in order to allow for real time adjustments or corrections. This paper features monolithic shell construction processes that promote a simple interface of live interaction between the fabricator and the tool control during the digital fabrication process. The implementation of novel digital and physical methods will be explored, offering the possibility of being combined with automated fabrication actions controlled by real time inputs with virtual reality [VR] influenced by 3d scanning and 3d CAD programs, and the possibility of incorporating augmented reality [AR].
keywords virtual reality; augmented reality; monolithic shells
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2017_002
id ecaade2017_002
authors Costa, Fábio, Eloy, Sara, Sales Dias, Miguel and Lopes, Mariana
year 2017
title ARch4models - A tool to augment physical scale models
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 711-718
doi https://doi.org/10.52842/conf.ecaade.2017.1.711
summary This paper focus on the development and evaluation of a computer tool that enriches physical scale models of buildings, which are commonly used during architecture and civil engineering design processes. The main goal of this work is to enable designers, namely architects, to use the affordances of the physical scale models, by enhancing them with digital characteristics that can be easily changed, allowing an enriched interaction of the designer with such models. Our in-house developed Augmented Reality tool, referred to as ARch4models, augments the user experience with visual features and interactive capabilities, not possible to accomplish with physical models (see this video in https://goo.gl/5zbdTQ). The tool allows the coherent registration between the real and the digital in the same space. Satisfaction evaluation studies were conducted that have shown that ARch4models improves the building design process when compared with a traditional methodology employing solely physical scale models.
keywords augmented reality; architecture; physical scale model; 3D model; AEC design process
series eCAADe
email
last changed 2022/06/07 07:56

_id sigradi2017_096
id sigradi2017_096
authors Cury Paraizo, Rodrigo; Cintia Mechler, Gabriel Cordeiro Gaspar
year 2017
title Exposição de pavilhões brasileiros em realidade aumentada [Showcasing World Expo Brazilian pavilions in augmented reality]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.666-673
summary This article describes an augmented reality exposition of three Brazilian World Expo pavilions. The study of Expo pavilions allow us to perceive several historic and cultural narratives embodied in those designs. The selected pavilions were from 1939 New York World’s Fair (by Oscar Niemeyer and Lucio Costa), 1958 Brussels World’s Fair (by Sergio Bernardes) and 1970 Osaka Expo ’70 (by Paulo Mendes da Rocha). The exposition is going to be held at the main campus of UFRJ, using Layar technology with minor adaptations to show the models in natural scale along with their corresponding information, discussing locative media opportunities regarding Architecture and Virtual Heritage.
series SIGRADI
email
last changed 2021/03/28 19:58

_id cf2017_596
id cf2017_596
authors Fukuda, Tomohiro; Nada, Hideki; Adachi, Haruo; Shimizu, Shunta; Takei, Chikako; Sato, Yusuke; Yabuki, Nobuyoshi; Motamedi, Ali
year 2017
title Integration of a Structure from Motion into Virtual and Augmented Reality for Architectural and Urban Simulation: Demonstrated in Real Architectural and Urban Projects
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 596.
summary Computational visual simulations are extremely useful and powerful tools for decision-making. The use of virtual and augmented reality (VR/AR) has become a common phenomenon due to real-time and interactive visual simulation tools in architectural and urban design studies and presentations. In this study, a demonstration is performed to integrate Structure from Motion (SfM) into VR and AR. A 3D modeling method is explored by SfM under realtime rendering as a solution for the modeling cost in large-scale VR. The study examines the application of camera parameters of SfM to realize an appropriate registration and tracking accuracy in marker-less AR to visualize full-scale design projects on a planned construction site. The proposed approach is applied to plural real architectural and urban design projects, and results indicate the feasibility and effectiveness of the proposed approach.
keywords Architectural and urban design, Visual simulation, Virtual reality, Augmented reality, Structure from motion.
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ecaade2017_142
id ecaade2017_142
authors Gönenç Sorguç, Arzu, Kruºa Yemiºcio?lu, Müge, Özgenel, Ça?lar F?rat, Katipo?lu, Mert Ozan and Rasulzade, Ramin
year 2017
title The Role of VR as a New Game Changer in Computational Design Education
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 401-408
doi https://doi.org/10.52842/conf.ecaade.2017.1.401.2
summary With the rapid advances in technology, virtual reality(VR) re-emerged as an affordable technology providing new potentials for virtual learning environments(VLE). Within the scope of this study, firstly a general perspective on potentials of VR to create an appropriate VLE is put forward regarding the potentials related with learning modalities. Then, VR as a VLE in architectural education is discussed and utilization of VR is revisited considering the fundamentals of education as how to enhance skills regarding creativity, furnish students to adopt future skills and how VR can be used to enhance design understanding as well as space perception and spatial relations. It is deliberated that instead of mirroring the real spaces, allowing students to understand the virtuality with its own constituents will broaden the understanding of space, spatial relations, scale, motion, and time both in physical and virtual. The dichotomy between physical and virtual materiality, the potentials and pitfalls in the process of transformation from real/physical to virtual - virtual to real/physical are discussed in relation with the student projects designed in the scope of Digital Design Studio course in Middle East Technical University. It is also shown that VR stimulates different learning modalities especially kinesthetic modality and helping students to develop creativity and metacognition about space and spatial relations.
keywords computational design education; virtual reality; digital tools; virtual learning environment
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2017_002
id caadria2017_002
authors Haeusler, M. Hank, Muehlbauer, Manuel, Bohnenberger, Sascha and Burry, Jane
year 2017
title Furniture Design Using Custom-Optimised Structural Nodes
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 841-850
doi https://doi.org/10.52842/conf.caadria.2017.841
summary Additive manufacturing techniques and materials have evolved rapidly during the last decade. Applications in architecture, engineering and construction are getting more attention as 3D printing is trying to find its place in the industry. Due to high material prices for metal 3d printing and in-homogenous material behaviour in printed plastic, 3D printing has not yet had a very significant impact at the scale of buildings. Limitations on scale, cost, and structural performance have also hindered the advancement of the technology and research up to this point. The research presented here takes a case study for the application of 3D printing at a furniture scale based on a novel custom optimisation approach for structural nodes. Through the concentration of non-standard geometry on the highly complex custom optimised nodes, 3D printers at industrial product scale could be used for the additive manufacture of the structural nodes. This research presents a design strategy with a digital process chain using parametric modeling, virtual prototyping, structural simulation, custom optimisation and additive CAD/CAM for a digital workflow from design to production. Consequently, the digital process chain for the development of structural nodes was closed in a holistic manner at a suitable scale.
keywords Digital fabrication; node optimisation; structural performance; 3D printing; carbon fibre.
series CAADRIA
email
last changed 2022/06/07 07:49

_id ecaade2018_p02
id ecaade2018_p02
authors Kepczynska-Walczak, Anetta and Martens, Bob
year 2018
title Digital Heritage - Special Panel Session
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 39-44
doi https://doi.org/10.52842/conf.ecaade.2018.1.039
summary According to eCAADe's mission, the exchange and collaboration within the area of computer aided architectural design education and research, while respecting the pedagogical approaches in the different schools and countries, can be regarded as a core activity. The current session follows up on the first Contextualised Digital Heritage Workshop (CDHW) held on the occasion of eCAADe 2016 in Oulu (D. di Mascio et.al.) This event was thought to represent the first of a series of future contextualized digital heritage workshops and hence, the name Oulu interchangeable with the name of any other city or place. The second CDHW took place in the framework of CAADRIA 2017 in Suzhou (D. di Mascio & M.A. Schnabel) and focussed on sharing and dissemination of heritage information and personal experiences, such as narratives.The primary objective for the 2018 digital heritage session is to engage participants in an active discussion, not the longer format presentation of prepared positions. The round table itself is limited to short opening statements so as to ensure time is allowed for viewpoints to be exchanged and for the conference attendees to join in on the issues discussed. The panel will review past practices with the potential for guiding future direction.
keywords Digital technology; Built heritage; Virtual archeology
series eCAADe
email
last changed 2022/06/07 07:52

_id cf2017_349
id cf2017_349
authors Kim, Eonyong; Kim, Kibum; Choo, Seungyeon; Ryu, Jikeun
year 2017
title Rule-based Security Planning System for Practical Application
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 349-359.
summary Security planning is a vital part of the operation and management phase in a building’s life cycle. Ideally, this will be addressed during the building design phase. However, reality often differs from this ideal. In the real world, information such as floor plans tend to insufficiently describe or imperfectly match physical buildings, and must be surveyed and re-worked during security planning. Because of this, security companies require two kinds of staff: those in the security business and those in charge of planning, including floor plan verification. This research focused on creating an efficient way to help staff in this work environment develop a system of security planning for buildings and facilities using a rule-based approach in a tailormade CAD system. In this research, we developed a new 3D CAD system for desktops and mobile devices, which specializes in security planning using a game-engine. To avoid errors during security planning, a rule-based check system was developed and integrated into the CAD system. The rule-set of this rule base was built from the security planning manual, including guidelines on equipment layout and wiring in various situations, which could then be used in the development of an automated check. This research describes the method of system development and final results.
keywords Security Planning, Operation and Management, Rule Base, BIM, CAD
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ecaade2017_248
id ecaade2017_248
authors Liapi, Katherine, Papantoniou, Andreana and Nousias, Chrysostomos
year 2017
title Square tessellation patterns on curved surfaces:In search of a parametric design method
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 371-378
doi https://doi.org/10.52842/conf.ecaade.2017.2.371
summary Methods for Tessellating a flat surface with regular or semi-regular patterns of polygons have already been addressed in literature and can be easily parameterized. For the tessellation of curved surfaces using patterns of one or more regular polygons there is not a uniquely defined approach to the problem within the context of architectural research and applications. This paper is focused on the tessellation of curved surfaces with square tiles, where the tessellation pattern consists of four squares with partly overlapping sides. In this study double curvature surfaces were considered first, and subsequently surfaces of more complex geometry such as minimal surfaces. Specifically, a method for the square tessellation of two types of doubly curved surfaces, the spherical and the ellipsoidal, is discussed and presented in the paper. In addition, the square tessellation of two types of minimal surfaces, the catenoid and the helicoid, have also been examined and presented. For each one of the surfaces that have been considered, an algorithm that generates the distribution of the planar square surfaces on the surface and renders possible the parametric description of the problem, was developed and presented in the paper. A discussion on boundary conditions for each developed method is also included. The Grasshopper visual programming language has been used for the parametric description and display of the results in a graphic environment. The research discussed in this paper can find application in several real world problems including surface paneling, or space packing of polyhedral structural units on a curved surface.
keywords square tessellation, curved surface tiling, ellipsoid tessellation, minimal surfaces tessellation, geometric appxoximation methods
series eCAADe
email
last changed 2022/06/07 07:59

_id ijac201715404
id ijac201715404
authors Miranda, Pablo
year 2017
title Computer utterances: Sequence and event in digital architecture
source International Journal of Architectural Computing vol. 15 - no. 4, 268-284
summary Barely a month before the end of World War II, a technical report begun circulating among allied scientists: the ‘First Draft of a Report on the EDVAC’, attributed to John von Neumann, described for the first time the design and implementation of the earliest stored-program computer. The ‘First Draft’ became the template followed by subsequent British and American computers, establishing the standard characteristics of most computing machines to date. This article looks at how the material and design choices described in this report influenced architecture, as it set up the technological matrix onto which a discipline relying on a tradition of drawn geometry would be eventually completely remediated. It consists of two parts: first, a theoretical section, analysing the repercussions for architecture of the type of computer laid out in the ‘First Draft’. Second, a description of a design experiment, a sort of information furniture, that tests and exemplifies some of the observations from the first section. This experiment examines the possibilities of an architecture that, moving beyond geometric representations, uses instead the programming of events as its rationale. The structure of this article reflects a methodology in which theoretical formulation and design experiments proceed in parallel. The theoretical investigation proposes concepts that can be tested and refined through design and conversely design work determines and encourages technical, critical and historical research. This relation is dialogical: theoretical investigation is not simply a rationalisation and explanation of earlier design work; inversely, the role of design is not just to illustrate previously formulated concepts. Both design and theorisation are interdependent but autonomous in their parallel development.
keywords Stored-program, Turing machine, Electronic Discrete Variable Automatic Computer, inscription/incorporation, geometry, sequence, event, information furniture, tangible interface, calm technoloy
series journal
email
last changed 2019/08/07 14:03

_id acadia17_000
id acadia17_000
authors Nagakura, Takehiko; Tibbits, Skylar; Iba?ez, Mariana and Mueller, Caitlin (eds.)
year 2017
title ACADIA 2017: DISCIPLINES & DISRUPTION
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), 706 p.
doi https://doi.org/10.52842/conf.acadia.2017
summary The Proceedings of the ACADIA 2017 conference contains peer reviewed research papers presented at the 37th annual conference of the Association for Computer Aided Design in Architecture. Disciplines & Disruption initiates a dialog about the state of the discipline of architecture and the impact of technology in shaping or disrupting design, methods and cultural fronts. For the past 30 years, distinctive advancements in technologies have delivered unprecedented possibilities to architects and enabled new expressions, performance, materials, fabrication and construction processes. Simultaneously, digital technology has permeated the social fabric around architecture with broad influences ranging from digital preservation to design with the developing world. Driven by technological, data and material advances, architecture now witnesses the moment of disruption, whereby formerly distinct areas of operation become increasingly connected and accessible to architecture's sphere of concerns in ways never before possible. Distinctions between design and making, building and urban scale, architecture and engineering, real and virtual, on site and remote, physical and digital data, professionals and crowds, are diminishing as technology increases the designer's reach far beyond the confines of the drafting board. This conference provides a platform to investigate the shifting landscape of the discipline today, and to help define and navigate the future.
keywords Computer Aided Design, ACADIA, ACADIA 2017, ACADIA Conference, Architecture
series ACADIA
email
last changed 2022/06/07 07:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_97202 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002