CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 570

_id ecaade2017_155
id ecaade2017_155
authors Beir?o, José Nuno and de Klerk, Rui
year 2017
title CIM-St - A Design Grammar for Street Cross Sections
doi https://doi.org/10.52842/conf.ecaade.2017.2.619
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 619-628
summary The design of streets plays an essential role in shaping the quality of our cities. In particular, the design of a street's cross section determines in many aspects the realm of its use, enhancing or reducing its ability for being walkable streets or traffic oriented streets. This paper shows a street cross section design interface where designs are controlled by an ontology and a parametric design system supported by a shape grammar. The ontology provides a semantically ordered vocabulary of shapes, symbols and descriptions upon which the grammar is defined. This paper focuses on the grammar definitions and its translation into a design oriented interface.
keywords Parametric Design; Ontologies; Compound Grammars; Street Cross Section; Urban Design Systems
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_151
id ecaade2018_151
authors Kirschner, Ursula and Sperling, David
year 2018
title Mapping Urban Information as an Interdisciplinary Method for Geography, Art and Architecture Representations
doi https://doi.org/10.52842/conf.ecaade.2018.2.215
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 215-224
summary In the current context, access to daily realities is becoming increasingly mediated and processed by maps, flooding us with spatial data that appears to be objective but needs to be questioned, or even disputed. On the other hand, there are some relevant aspects of the urban experience that elude the main maps provided by apps or big data visualizing projects. So this article points out alternative ways of mapping urban information in this context, by means of presenting and discussing the methodology and results of a mapping workshop carried out at a German university in 2017 with interdisciplinary groups of students. The aim was to provide new insights and readings of the contemporary city. We explored and invented the urban with a mix of creative research methods.
keywords urban mapping information; critical cartography; urban spirit; cooperative urban exploration
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2017_086
id caadria2017_086
authors Koh, Immanuel, Keel, Paul and Huang, Jeffrey
year 2017
title Decoding Parametric Design Data - Towards a Heterogeneous Design Search Space Remix
doi https://doi.org/10.52842/conf.caadria.2017.117
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 117-126
summary Designers or Non-Designers are not able to effectively access, view, search, discover, collect, reuse, remix and share parametric design data (PDD) for either professional or educational purposes. PDD here refers to the meta-data of 3D models generated by visual dataflow modelling software packages used in CAD/CAM industry. This ineffectiveness is a direct consequence of the deliberately proprietary nature of most PDD file formats and the restricted use within their respective desktop-based software environments. This paper presents an initial software prototype capable of automating the process of decoding a commonly used PDD file format and then re-encoding it with new set of metrics to facilitate multiple PDD searchability, comparability and interoperability, via an integrated web interface querying a design data repository. All PDDs are conceptualized as genealogies of numerical or geometric transformations and explicitly encoded with a graph-based data structure. The goal is to eventually learn from its own big data and begin to artificially generate novel PDDs heterogeneously.
keywords Design Decoder; Design Space Exploration; Parametric Design; Visual Analytics; Design Data
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2017_096
id caadria2017_096
authors Wang, Haofeng and Herr, Christiane M.
year 2017
title Measuring the Perceptive Intricacy of the Chinese Scholar Garden
doi https://doi.org/10.52842/conf.caadria.2017.335
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 335-344
summary The carefully orchestrated relationship between view and movement forms a core composition principle of Chinese scholar gardens to create poetic depth. We focus on one characteristic case study to examine the intricate spatial relationships between what is visible and what is accessible from the garden visitor's perspective. We examine the garden layout through a quantitative approach based on Visibility Graph Analysis. We identify a certain congruence between visibility and accessibility patterns, and propose that a network of strategically distributed overview spaces is employed throughout the garden to counterbalance tensions generated from disjunction between visibility and accessibility. The paper offers new insights into how quantifiable aspects of the garden can be used to generate qualitative perceptions of elegant restraint and compositional intricacy.
keywords Chinese scholar garden; Landscape design; VGA analysis; Overview space; Purview interface
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2017_057
id ecaade2017_057
authors Al-Qattan, Emad, Yan, Wei and Galanter, Philip
year 2017
title Tangible Computing for Establishing Generative Algorithms - A Case Study with Cellular Automata
doi https://doi.org/10.52842/conf.ecaade.2017.1.347
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 347-354
summary The work presented in this paper investigates the potential of tangible interaction to setup algorithmic rules for creating computational models. The research proposes a workflow that allows designers to create complex geometric patterns through their physical interaction with design objects. The method aims to address the challenges of designers implementing algorithms for computational modeling. The experiments included in this work are prototype-based, which link a digital environment with an artifact - the physical representation of a digital model that is integrated with a Physical Computing System. The digital-physical workflow is tested through enabling users to physically setup the rules of a Cellular Automata algorithm. The experiments demonstrate the possibility of utilizing tangible interaction to setup the initial cell state and the rules of a CA algorithm to generate complex geometric patterns.
keywords Physical Computing; Tangible User-Interface; Cellular Automata
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2017_035
id caadria2017_035
authors Al-Qattan, Emad, Yan, Wei and Galanter, Philip
year 2017
title Establishing Parametric Relationships for Design Objects Through Tangible Interaction
doi https://doi.org/10.52842/conf.caadria.2017.147
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 147-156
summary This paper presents a method for translating physical interaction with design objects into parametric relationships. A framework of the method is created to automate the generation of parametric equations as modeling constraints. The prototypes developed for this work link digital models with their physical counterparts to create a hybrid and tangible interface that enables user interaction. The prototypes investigate linear and non-linear types of object relationships for creating parametric models. The results demonstrate a novel approach in architectural design that assists users in creating complex geometric relationships through intuitive interaction.
keywords Physical Computing; Parametric Design; Building Information Modeling; Tangible Interaction
series CAADRIA
email
last changed 2022/06/07 07:54

_id ijac201715402
id ijac201715402
authors Alaçam, Sema; Orkan Zeynel Güzelci, Ethem Gürer and Saadet Zeynep Bac?noglu
year 2017
title Reconnoitring computational potentials of the vault-like forms: Thinking aloud on muqarnas tectonics
source International Journal of Architectural Computing vol. 15 - no. 4, 285-303
summary This study sheds light on a holistic understanding of muqarnas with its historical, philosophical and conceptual backgrounds on one hand and formal, structural and algorithmic principles on the other hand. The vault-like Islamic architectural element, muqarnas, is generally considered to be a non-structural decorative element. Various compositional approaches have been proposed to reveal the inner logic of these complex geometric elements. Each of these approaches uses different techniques such as measuring, unit-based decoding or three-dimensional interpretation of two-dimensional patterns. However, the reflections of the inner logic onto different contexts, such as the usage of different initial geometries, materials or performative concerns, were neglected. In this study, we offer a new schema to approach the performative aspects of muqarnas tectonics. This schema contains new sets of elements, properties and relations deriving partly from previous approaches and partly from the technique of folding. Thus, this study first reviews the previous approaches to analyse the geometric and constructional principles of muqarnas. Second, it explains the proposed scheme through a series of algorithmic form-finding experiments. In these experiments, we question whether ‘fold’, as one of the performative techniques of making three-dimensional forms, contributes to the analysis of muqarnas in both a conceptual and computational sense. We argue that encoding vault-like systems via geometric and algorithmic relations based on the logic of the ‘fold’ provides informative and intuitive feedback for form-finding, specifically in the earlier phases of design. While focusing on the performative potential of a specific fold operation, we introduced the concept of bifurcation to describe the generative characteristics of folding technique and the way of subdividing the form with respect to redistribution of the forces. Thus, in this decoding process, the bifurcated fold explains not only to demystify the formal logic of muqarnas but also to generate new forms without losing contextual conditions.
keywords Muqarnas, vault, layering, folding, force flow, bifurcation
series journal
email
last changed 2019/08/07 14:03

_id cf2017_337
id cf2017_337
authors Barber, Gabriela; Lafluf, Marcos; Amen, Fernando Garcia; Accuosto, Pablo
year 2017
title Interactive Projection Mapping in Heritage: The Anglo Case
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 337-348.
summary This work is the outcome of a multidisciplinary collaboration in the context of the VidiaLab (Laboratorio de Visualización Digital Avanzada). It proposes an application of interactive video mapping techniques as a form of experiencing the Fray Bentos industrial landscape, declared as a World Heritage Site by UNESCO in 2015. An immersive environment was created by enriching a physical scale model of the site with projected digital images and information, providing new and attractive ways of interaction with the cultural heritage. Proposals for future work and educational applications of the developed tools are also discussed.
keywords Video Mapping, New Media Art, Heritage, Museum, Human-Computer Interaction
series CAAD Futures
email
last changed 2017/12/01 14:38

_id acadia17_138
id acadia17_138
authors Berry, Jaclyn; Park, Kat
year 2017
title A Passive System for Quantifying Indoor Space Utilization
doi https://doi.org/10.52842/conf.acadia.2017.138
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 138-145
summary This paper presents the development of a prototype for a new sensing device for anonymously evaluating space utilization, which includes usage factors such as occupancy levels, congregation and circulation patterns. This work builds on existing methods and technology for measuring building performance, human comfort and occupant experience in post-occupancy evaluations as well as pre-design strategic planning. The ability to collect data related to utilization and occupant experience has increased significantly due to the greater accessibility of sensor systems in recent years. As a result, designers are exploring new methods to empirically verify spatial properties that have traditionally been considered more qualitative in nature. With this premise, this study challenges current strategies that rely heavily on manual data collection and survey reports. The proposed sensing device is designed to supplement the traditional manual method with a new layer of automated, unbiased data that is capable of capturing environmental and social qualities of a given space. In a controlled experiment, the authors found that the data collected from the sensing device can be extrapolated to show how layout, spatial interventions or other design factors affect circulation, congregation, productivity, and occupancy in an office setting. In the future, this sensing device could provide designers with real-time feedback about how their designs influence occupants’ experiences, and thus allow the designers to base what are currently intuition-based decisions on reliable data and evidence.
keywords design methods; information processing; smart buildings; IoT
series ACADIA
email
last changed 2022/06/07 07:52

_id acadia17_146
id acadia17_146
authors Black, Conor; Forwood, Ed
year 2017
title Game Engine Computation for Serious Engineering: Visualisation and Analysis of Building Facade Movements as a Consequence of Loads on the Primary Structure
doi https://doi.org/10.52842/conf.acadia.2017.146
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 146-153
summary This paper demonstrates the innovative use of game engines as a tool in the analysis and communication of complex structural engineering. It specifically looks at the relationship between a building’s primary structure and its façade. The analysis and visualisations, scripted using the Game Engine Unity3D, focuses on visualising the implications of movements from the primary structure [under various load cases] on the façade. This paper describes the novel process by which Unity3D is utilised to create an applet which imports displacements from structural software and post-processes the data to visualise the complex effect on façade panels according to its support conditions. It demonstrates that visualising facade movements in real-time, as opposed to current, static report-based descriptions, provide access for the comprehension of more complex building systems. This therefore has the possibility to reduce safety factors applied to facade movement joints.
keywords design methods; information processing; game engines; fabrication; simulation & optimization
series ACADIA
email
last changed 2022/06/07 07:52

_id ijac201715302
id ijac201715302
authors Borges de Vasconselo, Tássias and David Sperling
year 2017
title From representational to parametric and algorithmic interactions: A panorama of Digital Architectural Design teaching in Latin America
source International Journal of Architectural Computing vol. 15 - no. 3, 215-229
summary This study focuses on the context of graphic representation technologies and digital design on Architectural teaching in Latin America. From categories proposed by Oxman and Kotnik and through a mapping study framed by a systematic review in CumInCAD database, it is presented a panorama of the state-of-art of the digital design on Architectural teaching in the region, between 2006 and 2015. The results suggest a context of coexistence of representational interaction and parametric interaction, as well as a transition from one to another and the emergence of the first experiments in algorithmic interaction. As this mapping shows an ongoing movement toward Digital Architectural Design in Latin America in the last decade, and points out its dynamics in space in time, it could contribute to strengthen a crowdthinking network on this issue in the region and with other continents.
keywords Computer-aided architectural design, Digital Architectural Design teaching, interaction with digital media, levels of design computability, Latin America, mapping study
series journal
email
last changed 2019/08/07 14:03

_id ecaade2017_172
id ecaade2017_172
authors Brand?o, Filipe, Paio, Alexandra and Whitelaw, Christopher
year 2017
title Mapping Mass Customization
doi https://doi.org/10.52842/conf.ecaade.2017.2.417
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 417-424
summary Mass customization (MC) and personal fabrication (PF) are current relevant topics in architecture offices practice and schools design research. Architects are adopting information based design and production techniques as a response to architectural century challenges. However, is not clear how various authors used and transformed the concept in practice, research and industry after three decades since the MC term was introduced by Davis (1987). Therefore, is essential to map the most relevant works in the field in relation to production and design control. The paper presents some of the results of the ongoing study through an evolving map that aims to visualize relationships, layering complexity and revealing difference.
keywords Mass Customization; Personal Fabrication; Housing; Map
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2017_071
id sigradi2017_071
authors Bueno, Ernesto; Antônio Carlos de Quadros Gonçalves Neto, Caio Henrique Mehl
year 2017
title Análise de variações no desempeno lumínico do Centro Cívico de Curitiba através de modelagem e simulação paramétrica [Analysis of variations in daylight performance of the Curitiba Civic Center through parametric modeling and simulation]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.486-490
summary To ensure access to sunlight in urban planning, specialized software is available. Mainly used in the initial stages, these tools allow the study of the environmental performance of the proposal. However, neighborhood impact is seen as a secondary aspect, usually evaluated with GIS tools, simulating pre-existing or proposed situations. However, visual programming tools allow, data processing in addition to parametric modeling, streamlining the process of analysis of architectural and urban pre-existences and proposals. From a case study, we present a methodology that uses these tools to demonstrate the loss of daylight performance of open spaces due to urban densification.
keywords Urban daylight performance; Environmental performance simulation; Parametric urban modeling; Grasshopper.
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2017_244
id ecaade2017_244
authors Chaltiel, Stephanie, Bravo, Maite and Chronis, Angelos
year 2017
title Digital fabrication with Virtual and Augmented Reality for Monolithic Shells
doi https://doi.org/10.52842/conf.ecaade.2017.2.211
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 211-218
summary The digital fabrication of monolithic shell structures is presenting some challenges related to the interface between computational design and fabrication techniques, such as the methods chosen for the suitable parametrization of the geometry based on materiality characteristics and construction constrains, the digital optimization criteria of variables, and the translation of the relevant code used for digital fabrication. Specifically, the translation from the digital to the physical when a definite materiality appears during the digital fabrication process proves to be a crucial step, which is typically approached as a linear and predetermined sequence. This often-difficult step offers the potential of embedding a certain level of interactivity between the fabricator and the materialized model during the fabrication process in order to allow for real time adjustments or corrections. This paper features monolithic shell construction processes that promote a simple interface of live interaction between the fabricator and the tool control during the digital fabrication process. The implementation of novel digital and physical methods will be explored, offering the possibility of being combined with automated fabrication actions controlled by real time inputs with virtual reality [VR] influenced by 3d scanning and 3d CAD programs, and the possibility of incorporating augmented reality [AR].
keywords virtual reality; augmented reality; monolithic shells
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2017_157
id ecaade2017_157
authors Date, Kartikeya, Schaumann, Davide and Kalay, Yehuda E.
year 2017
title A Parametric Approach To Simulating Use-Patterns in Buildings - The Case Of Movement
doi https://doi.org/10.52842/conf.ecaade.2017.2.503
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 503-510
summary We describe one of the three core use-pattern building blocks of a parametric approach to simulating use-patterns in buildings. Use-patterns are modeled as events which use specified descriptions of spaces, actors and activities which constitute them. The simulation system relies on three fundamental patterns of use - move, meet and do. The move pattern is considered in detail in this paper with specific reference to what we term the partial knowledge issue. Modeling decision making about how to move through the space (what path to take) depends on modeling the actor's partial access to knowledge. Visibility is used as an example of partial knowledge. The parametric approach described in the paper enables the clear separation of syntactical and semantic conditions which inform decisions and the coordination of decisions made by agents in a simulation of use-patterns. This approach contributes to extending the analytical capability of Building Information Models from the point of view of evaluating how a proposed building design may be used, given complex, interrelated patterns of use.
keywords Agent-Based Systems, Simulation, Use-Patterns, Design Tools
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaaderis2018_103
id ecaaderis2018_103
authors Davidová, Marie and Prokop, Šimon
year 2018
title TreeHugger - The Eco-Systemic Prototypical Urban Intervention
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 75-84
keywords The paper discusses co-design, development, production, application of TreeHugger (see Figure 1). The co-design among community and trans-disciplinary participants with different expertise required scope of media mix, switching between analogue, digital and back again. This involves different degrees of physical and digital 'GIGA-Mapping' (Sevaldson, 2011, 2015), 'Grasshopper3d' (Davidson, 2017) scripting and mix of digital and analogue fabrication to address the real life world. The critical participation of this 'Time-Based Design' (Sevaldson, 2004, 2005) process is the interaction of the prototype with eco-systemic agency of the adjacent environment - the eco-systemic performance. The TreeHugger is a responsive solid wood insect hotel, generating habitats and edible landscaping (Creasy, 2004) on bio-tope in city centre of Prague. To extend the impact, the code was uploaded for communities to download, local-specifically edit and apply worldwide. Thus, the fusion of discussed processes is multi-scaled and multi-layered, utilised in emerging design field: Systemic Approach to Architectural Performance.
series eCAADe
email
last changed 2018/05/29 14:33

_id cf2017_112
id cf2017_112
authors de Klerk, Rui; Beirao, Jose Nuno
year 2017
title CIM-St: A Parametric Design System for Street Cross Sections
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 112.
summary City environment is very much determined by the design of its streets and in particular by the design of its cross section. This paper shows a street cross section design interface where designs are controlled by an ontology and a parametric design system. The system keeps its semantic structure through the ontology and provides a design interface that understands the computer interaction needed by the urban designer. Real time visual analytics are used to support the design decision process, allowing designers to objectively compare designs and measure the differences between them, in order to make informed decisions.
keywords Parametric design, Ontologies, Compound grammars, Street cross section, Urban design systems
series CAAD Futures
email
last changed 2017/12/01 14:37

_id acadia17_212
id acadia17_212
authors De Luca, Francesco
year 2017
title Solar Form Finding: Subtractive Solar Envelope and Integrated Solar Collection Computational Method for High-Rise Buildings in Urban Environments
doi https://doi.org/10.52842/conf.acadia.2017.212
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 212-221
summary Daylight standards contribute significantly to the form of buildings and the urban environment. Direct solar access of existing and new buildings can be considered through the use of solar envelope and solar collection isosurface methods. The first determines the maximum volume and shape that new buildings cannot exceed to guarantee the required solar rights on existing surrounding facades. The latter predicts the portion of facades of new buildings that will receive the required direct sunlight hours in urban environments. Nowadays, environmental design software based on the existing methods permits the generation of solar envelopes and solar collection isosurfaces to use in the schematic design phase. Nevertheless, the existing methods and software present significant limitations when used to design buildings that must fulfil the Estonian daylight standard. Recent research has successfully developed computational workflows based on the existing methods and available tools to tackle such shortcomings. The present work uses the findings to propose a novel computational method to generate solar envelopes and integrate solar collection analysis. It is a subtractive form-finding method that is more efficient than the existing additive methods and other recent workflows when it is applied to high-rise buildings in fragmented urban environments. The tests performed show that the new method permits the realisation of compliant and larger solar envelopes, which furthermore embed formal properties. The objective of the research is to contribute to the development of computational methods and tools to integrate direct solar access performance efficiently into the design process.
keywords design methods; information processing; simulation & optimization; form finding
series ACADIA
email
last changed 2022/06/07 07:55

_id ecaade2017_164
id ecaade2017_164
authors De Luca, Francesco
year 2017
title From Envelope to Layout - Buildings Massing and Layout Generation for Solar Access in Urban Environments
doi https://doi.org/10.52842/conf.ecaade.2017.2.431
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 431-440
summary The use of daylight for the inhabitants health and comfort purposes and for the energy efficiency of buildings influences significantly the shape and outlook of urban environments. The solar envelope and solar collection surface are methods to define the massing of buildings for direct solar access requirements. They have been recently improved to be used in the design of buildings in relation to the Estonian daylight standard. Nevertheless the solar collection method can be applied only to single buildings with simple shape. The present research investigates the direct solar access performance of building clusters with multiple layouts in different urban areas in the city of Tallinn. Result show that different patterns perform in significant different ways whereas the same cluster types have the best and the least performances in all the cases.
keywords Urban design; Direct solar access; Solar envelope; Environmental analysis; Computational design
series eCAADe
email
last changed 2022/06/07 07:55

_id cf2017_225
id cf2017_225
authors De Luca, Francesco; Voll, Hendrik
year 2017
title Solar Collection Multi-isosurface Method: Computational Design Advanced Method for the Prediction of Direct Solar Access in Urban Environments
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 225.
summary Direct solar access and daylight requirements contribute significantly when it comes to shaping the layout and appearance of contemporary cities. Urban planning regulations in Estonia set the minimum amount of direct solar access that existing housing has the right to receive and new premises are required to get when new developments are built. The solar envelope and solar collection methods are used to define the volume and shape of new buildings that allow the due solar rights to the surrounding buildings, in the case of the former, and the portion of the own façades that receive the required direct solar access, in the case of the latter. These methods have been developed over a period of several decades, and present-day CAAD and environmental analysis software permits the generation of solar envelopes and solar collection isosurfaces, although they suffer from limitations. This paper describes an advanced method for generating solar collection isosurfaces and presents evidence that it is significantly more efficient than the existing method for regulation in Estonia’s urban environments.
keywords Urban planning, Direct solar access, Solar envelope, Solar collection, Computational design, Environmental design
series CAAD Futures
email
last changed 2017/12/01 14:38

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_105894 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002