CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 576

_id sigradi2017_049
id sigradi2017_049
authors Braida, Frederico; Cheyenne Azevedo, Izabela Ferreira, Janaina Castro, Janaina Castro
year 2017
title Projetando com blocos de montar: Residências mínimas no contexto da cidade contemporânea [Design with building blocks: Compact homes in the context of the contemporary city]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.335-343
summary This paper presents the results of the creation of a game, composed of building blocks, conceived as didactic material for the minimum residences design. The game was designed to be produced by rapid prototyping and digital manufacturing resources. Methodologically, the research was based on both a literature review and an empirical research on the use of a set of building blocks. The text shows the critical analysis and reflections on the results achieved with a workshop entitled "Designing compact homes with building blocks".
keywords Building blocks; Rapid prototyping; Digital fabrication; Education; Architecture.
series SIGRADI
email
last changed 2021/03/28 19:58

_id cf2017_225
id cf2017_225
authors De Luca, Francesco; Voll, Hendrik
year 2017
title Solar Collection Multi-isosurface Method: Computational Design Advanced Method for the Prediction of Direct Solar Access in Urban Environments
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 225.
summary Direct solar access and daylight requirements contribute significantly when it comes to shaping the layout and appearance of contemporary cities. Urban planning regulations in Estonia set the minimum amount of direct solar access that existing housing has the right to receive and new premises are required to get when new developments are built. The solar envelope and solar collection methods are used to define the volume and shape of new buildings that allow the due solar rights to the surrounding buildings, in the case of the former, and the portion of the own façades that receive the required direct solar access, in the case of the latter. These methods have been developed over a period of several decades, and present-day CAAD and environmental analysis software permits the generation of solar envelopes and solar collection isosurfaces, although they suffer from limitations. This paper describes an advanced method for generating solar collection isosurfaces and presents evidence that it is significantly more efficient than the existing method for regulation in Estonia’s urban environments.
keywords Urban planning, Direct solar access, Solar envelope, Solar collection, Computational design, Environmental design
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ecaade2017_013
id ecaade2017_013
authors Junk, Stefan and Gawron, Philipp
year 2017
title Development of parametric CAAD models for the additive manufacturing of scalable architectural models
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 419-426
doi https://doi.org/10.52842/conf.ecaade.2017.1.419
summary Architecture models are an essential component of the development process and enable a physical representation of virtual designs. In addition to the conventional methods of model production using the machining of models made of wood, metal, plastic or glass, a number of additive manufacturing processes are now available. These new processes enable the additive manufacturing of architectural models directly from CAAD or BIM data. However, the boundary conditions applicable to the ability to manufacture models with additive manufacturing processes must also be considered. Such conditions include the minimum wall thickness, which depends on the applied additive manufacturing process and the materials used. Moreover, the need for the removal of support structures after the additive manufacturing process must also be considered. In general, a change in the scale of these models is only possible at very high effort. In order to allow these restrictions to be adequately incorporated into the CAAD model, this contribution develops a parametrized CAAD model that allows such boundary conditions to be modified and adapted while complying with the scale. Usability of this new method is illustrated and explained in detail in a case study. In addition, this article addresses the additive manufacturing processes including subsequent post-processing.
keywords Digital manufacturing; Parametric design; Architectural model
series eCAADe
email
last changed 2022/06/07 07:52

_id ijac201715202
id ijac201715202
authors Koutamanis, Alexander
year 2017
title Briefing and Building Information Modelling: Potential for integration
source International Journal of Architectural Computing vol. 15 - no. 2, 120-133
summary The article brings together the subjects of briefing and Building Information Modelling. It considers the brief as information source for Building Information Modelling and Building Information Modelling as an environment for automating brief- related analysis and guidance. The approach is characterized by feedforward and feedback, incorporation of constraints from the brief in Building Information Modelling, connection of briefing goals to performance analysis and correlation of requirements in the brief to Building Information Modelling object properties and relations. To test the approach, 10 briefs are parsed into goals, constraints and requirements, which are then considered for integration in Building Information Modelling. As the majority of these items can become part of a model and subject to automated analyses, integration of briefing in Building Information Modelling is proposed as a viable option that can improve design and briefing performance but also signals significant changes to briefing.
keywords Briefing, Building Information Modelling, integration, continuity, feedforward, feedback, analysis
series other
type normal paper
email
last changed 2019/08/02 08:29

_id sigradi2018_1797
id sigradi2018_1797
authors Locatelli, Daniel; de Paula, Adalberto; Omena, Thiago Henrique; Lara, Arthur
year 2018
title High-Low as expression of the Brazilian digital fabrication
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 718-723
summary This paper is the result of an investigation about the influence of digital processes in Design and its importance in innovation within ephemeral architecture through the concept of High-Low. The ephemeral architecture has the potential to combine academic and artistic knowledge to Brazilian commercial production. Here is presented one experimental case study designed to Expo Revestir for Docol in 2017 that balances the paradigm of computational design with the academic field and viable commercial applications.
keywords High-Low; File-to-Factory; Ephemeral Architecture; Computational Design;
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2017_087
id ecaade2017_087
authors Marijnissen, Marjolein P.A.M. and van der Zee, Aant
year 2017
title 3D Concrete Printing in Architecture - A research on the potential benefits of 3D Concrete Printing in Architecture
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 299-308
doi https://doi.org/10.52842/conf.ecaade.2017.2.299
summary This research explores the use of large-scale 3D Printing techniques in architecture and structural design. First we will analyse the various methods in large-scale 3D printing in order to choose the method with the most potential to be used to build large-scale residential buildings in the Netherlands. Then we will investigate the properties of this 3D printing technique to determine the new building process, related to building with a 3D Concrete Printer. The freedom in movement of the printer and the properties of the concrete mixture used to print will form the guidelines in the creation of a design language in which both material costs and labour costs are reduced to a minimum. The design language is later applied on the design of a house, which shows the impact 3D Concrete Printing should have on the current boundaries in architecture and structural design.
keywords Additive Manufacturing; 3D Concrete Printing; Structural Optimization; Personalization
series eCAADe
email
last changed 2022/06/07 07:59

_id sigradi2018_1405
id sigradi2018_1405
authors Massara Rocha, Bruno; Santo Athié, Katherine
year 2018
title Emerging senses from Smart Cities phenomenon
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 434-441
summary The paper analyses the emerging senses from the Smart Cities phenomenon, using as background Lemos (2017), Maia (2013), Rozestraten (2016), Söderström, Paache & Klauser (2014) and evaluating the speeches found in the SmartCity Expo Curitiba. We identified three basic senses: the binary utopia/ficcion, business and informational city, discussed by philosophers such as Foucault (2017), Lévy (2011) e Harvey (2014). The results outline the importance of political role of technology and adverts that it must not be controlled by business. Finally, the paper concludes that the smartest technology is one that opens space to the inclusion of greater human expressivity and subjectivity, not inducing a space of control.
keywords Smart cities; Digital technologies; Technopolitics;
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia17_18
id acadia17_18
authors Abdel-Rahman, Amira; Michalatos, Panagiotis
year 2017
title Magnetic Morphing
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 18-27
doi https://doi.org/10.52842/conf.acadia.2017.018
summary In an attempt to design shape-morphing multifunctional objects, this thesis uses programmable matter to design self-organizing multi-agent systems capable of morphing from one shape into another. The research looks at various precedents of self-assembly and modular robotics to design and prototype passive agents that could be cheaply mass-produced. Intelligence will be embedded into these agents on a material level, designing different local interactions to perform different global goals. The initial exploratory study looks at various examples from nature like plankton and molecules. Magnetic actuation is chosen as the external actuation force between agents. The research uses simultaneous digital and physical investigations to understand and design the interactions between agents. The project offers a systemic investigation of the effect of shape, interparticle forces, and surface friction on the packing and reconfiguration of granular systems. The ability to change the system state from a gaseous, liquid, then solid state offers new possibilities in the field of material computation, where one can design a "material" and change its properties on demand.
keywords material and construction; construction/robotics; smart materials; smart assembly/construction; simulation & optimization
series ACADIA
email
last changed 2022/06/07 07:52

_id caadria2017_131
id caadria2017_131
authors Abe, U-ichi, Hotta, Kensuke, Hotta, Akito, Takami, Yosuke, Ikeda, Hikaru and Ikeda, Yasushi
year 2017
title Digital Construction - Demonstration of Interactive Assembly Using Smart Discrete Papers with RFID and AR codes
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 75-84
doi https://doi.org/10.52842/conf.caadria.2017.075
summary This paper proposes and examines a new way of cooperation between human workers and machine intelligence in architectural scale construction. For the transfer of construction information between the physical and digital world, mature technologies such as Radio Frequency IDentifier (RFID), and emerging technologies like Augmented Reality (AR) are used in parallel to supplement each other. Dynamic data flow is implemented to synchronize digital and physical models by following the ID signatures of individual building parts. The contributions of this paper includes the demonstration of current technological limitations, and the proposal of a hybrid system between human and computer, which is tested in order to explore the possibilities of digitally enhanced construction methods.
keywords Digital Construction; Augmented Reality; Human-Machine interaction
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2017_054
id ecaade2017_054
authors Abramovic, Vasilija, Glynn, Ruairi and Achten, Henri
year 2017
title ROAMNITURE - Multi-Stable Soft Robotic Structures
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 327-336
doi https://doi.org/10.52842/conf.ecaade.2017.1.327
summary The rise in robotics is not only changing fabrication research in architecture but increasingly providing opportunities for animating the materiality of architecture, offering responsive, performative and adaptive design possibilities for the built environment. A fundamental challenge with robotics is its suitability to safe, and comfortable use in proximity to the human body. Here we present the preliminary results of the Roamniture Project, a hybrid approach to developing kinetic architecture based on a combination of rigid and soft body dynamics.
keywords Kinetic Architecture; Soft Robotics; Soft Architecture; Furniture
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
doi https://doi.org/10.52842/conf.acadia.2021.530
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id ijac201715301
id ijac201715301
authors Afsari, Kereshmeh; Charles Eastman and Dennis Shelden
year 2017
title Building Information Modeling data interoperability for Cloud-based collaboration: Limitations and opportunities
source International Journal of Architectural Computing vol. 15 - no. 3, 187-202
summary Collaboration within Building Information Modeling process is mainly based on the manual transfer of document files in either vendor-specific formats or neutral format using Industry Foundation Classes. However, since the web enables Cloud-based Building Information Modeling services, it provides an opportunity to exchange data with web technologies. Alternative data sharing solutions include the federation of Building Information Modeling models and an interchange hub for data exchange in real time. These solutions face several challenges, are vendor locked, and integrate Building Information Modeling applications to a third new system. The main objective of this article is to investigate current limitations as well as opportunities of Cloud interoperability to outline a framework for a loosely coupled network-based Building Information Modeling data interoperability. This study explains that Cloud-Building Information Modeling data exchange needs to deploy major components of Cloud interoperability such as Cloud application programming interfaces, data transfer protocols, data formats, and standardization to redefine Building Information Modeling data flow in Cloud-based applications and to reshape collaboration process.
keywords Building Information Modeling, Cloud, data exchange, interoperability, Industry Foundation Classes
series journal
email
last changed 2019/08/07 14:03

_id caadria2017_147
id caadria2017_147
authors Agirachman, Fauzan Alfi, Ozawa, Yo, Indraprastha, Aswin, Shinozaki, Michihiko, Sitompul, Irene Debora Meilisa, Nuraeni, Ruri, Chirstanti, Augustine Nathania, Putra, Andrew Cokro and Zefanya, Teresa
year 2017
title Reimagining Braga - Remodeling Bandung's Historical Colonial Streetscape in Virtual Reality
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 23-32
doi https://doi.org/10.52842/conf.caadria.2017.023
summary This paper presents the experience of the first phase of remodeling existing historical and colonial district in Bandung, Indonesia, including existing building façade, streetscape and street furniture. Braga Street is chosen as study case because it is a well-known historical street in Bandung with art deco style buildings constructed during Dutch colonial era. By remodeling it, it could help stakeholders to evaluate existing Braga street condition, to test any modification of buildings along the street and to determine specific regulation for the street. In this case, we use Unity3D and Oculus Rift DK2 for remodeling current situation. We gathered feedback from respondents using a questionnaire given after they experienced the model in VR. Many lessons learned from modeling process and respondents' feedback: higher frame rate to make seamless VR experience by having all components on a low poly model and provide smoother movement to prevent visual discomfort. This paper's conclusion gives suggestions for anyone who want to start architecture modeling in virtual reality for the very first time and how to optimize it.
keywords Virtual reality; historical building; digital reconstruction; streetscape
series CAADRIA
email
last changed 2022/06/07 07:54

_id ijac201715203
id ijac201715203
authors Agirbas, Asli and Emel Ardaman
year 2017
title Macro-scale designs through topological deformations in the built environment
source International Journal of Architectural Computing vol. 15 - no. 2, 134-147
summary Design studies are being done on contemporary master-plans which may be applied in many locations worldwide. Advances in information technology are becoming the base model of design studies, and these may be more effective than the efforts of humans in the field of architecture and urban design. However, urban morphology variables and constants must be considered while designing contemporary master-plans in the existing built environment. The aims of this study were to extend the use of computer software for different applications and to make a topological work in the regional context. Accordingly, a case study was made using the nCloth simulation tools to create non-Euclidean forms while protecting the road system, which is one of the constant parameters of urban morphology in the built environment.
keywords Conceptual design, built environment, simulation, contemporary master-plans, urban morphology, topology
series other
type normal paper
email
last changed 2019/08/02 08:30

_id ecaade2017_021
id ecaade2017_021
authors Agirbas, Asli
year 2017
title The Use of Simulation for Creating Folding Structures - A Teaching Model
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 325-332
doi https://doi.org/10.52842/conf.ecaade.2017.1.325
summary In architectural education, the demand for creating forms with a non-Euclidean geometry, which can only be achieved by using the computer-aided design tools, is increasing. The teaching of this subject is a great challenge for both students and instructors, because of the intensive nature of architecture undergraduate programs. Therefore, for the creation of those forms with a non-Euclidean geometry, experimental work was carried out in an elective course based on the learning visual programming language. The creation of folding structures with form-finding by simulation was chosen as the subject of the design production which would be done as part of the content of the course. In this particular course, it was intended that all stages should be experienced, from the modeling in the virtual environment to the digital fabrication. Hence, in their early years of architectural education, the students were able to learn versatile thinking by experiencing, simultaneously, the use of simulation in the environment of visual programming language, the forming space by using folding structures, the material-based thinking and the creation of their designs suitable to the digital fabrication.
keywords Folding Structures; CAAD; Simulation; Form-finding; Architectural Education
series eCAADe
email
last changed 2022/06/07 07:54

_id cf2017_249
id cf2017_249
authors Agirbas, Asli
year 2017
title Teaching Design by Coding in Architecture Undergraduate Education: A Case Study with Islamic Patterns
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 249-258.
summary Computer-aided design has found its role in the undergraduate education of architects, and presently design by coding is also gradually finding further prominence in accord with the increasing demand by students who wish to learn more about this topic. This subject is included in an integrated manner in some studio courses on architecture design in some schools, or it is taught separately in elsewhere. In terms of the separate course on coding, the principal difficulty is that actual applications of the method can rarely be included due to time limitations and the fact that it is conducted separately from the studio course on architecture. However, within the framework of the architectural education, in order to learn about the coding it is necessary to consider it along with the design process, and this versatile thinking can only be achieved by the application of the design. In this study, an elective undergraduate course is considered in the context of design and to yield a versatile thinking strategy while learning the language of visual programming. The course progressed under the theoretical framework of shape grammar from the design stage through to the digital fabrication process, and the experimental studies were carried out on the selected topic of Islamic pattern. A method was proposed to improve the productivity of such courses, and an evaluation of the results is presented.
keywords Islamic Patterns, Shape Grammars, Architectural Education, Parametric Design, CAAD.
series CAAD Futures
email
last changed 2017/12/01 14:38

_id acadia17_28
id acadia17_28
authors Aguiar, Rita; Cardoso, Carmo; Leit?o,António
year 2017
title Algorithmic Design and Analysis Fusing Disciplines
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 28-37
doi https://doi.org/10.52842/conf.acadia.2017.028
summary In the past, there has been a rapid evolution in computational tools to represent and analyze architectural designs. Analysis tools can be used in all stages of the design process, but they are often only used in the final stages, where it might be too late to impact the design. This is due to the considerable time and effort typically needed to produce the analytical models required by the analysis tools. A possible solution would be to convert the digital architectural models into analytical ones, but unfortunately, this often results in errors and frequently the analytical models need to be built almost from scratch. These issues discourage architects from doing a performance-oriented exploration of their designs in the early stages of a project. To overcome these issues, we propose Algorithmic Design and Analysis, a method for analysis that is based on adapting and extending an algorithmic-based design representation so that the modeling operations can generate the elements of the analytical model containing solely the information required by the analysis tool. Using this method, the same algorithm that produces the digital architectural model can also automatically generate analytical models for different types of analysis. Using the proposed method, there is no information loss and architects do not need additional work to perform the analysis. This encourages architects to explore several design alternatives while taking into account the design’s performance. Moreover, when architects know the set of design variations they wish to analyze beforehand, they can easily automate the analysis process.
keywords design methods; information processing; simulation & optimization; BIM; generative system
series ACADIA
email
last changed 2022/06/07 07:54

_id ecaade2017_085
id ecaade2017_085
authors Agustí-Juan, Isolda, Hollberg, Alexander and Habert, Guillaume
year 2017
title Integration of environmental criteria in early stages of digital fabrication
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 185-192
doi https://doi.org/10.52842/conf.ecaade.2017.2.185
summary The construction sector is responsible for a big share of the global energy, resource demand and greenhouse gas emissions. As such, buildings and their designers are key players for carbon mitigation actions. Current research in digital fabrication is beginning to reveal its potential to improve the sustainability of the construction sector. To evaluate the environmental performance of buildings, life cycle assessment (LCA) is commonly employed. Recent research developments have successfully linked LCA to CAD and BIM tools for a faster evaluation of environmental impacts. However, these are only partially applicable to digital fabrication, because of differences in the design process. In contrast to conventional construction, in digital fabrication the geometry is the consequence of the definition of functional, structural and fabrication parameters during design. Therefore, this paper presents an LCA-based method for design-integrated environmental assessment of digitally fabricated building elements. The method is divided into four levels of detail following the degree of available information during the design process. Finally, the method is applied to the case study "Mesh Mould", a digitally fabricated complex concrete wall that does not require any formwork. The results prove the applicability of the method and highlight the environmental benefits digital fabrication can provide.
keywords Digital fabrication; Parametric LCA; Early design; Sustainability
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia17_38
id acadia17_38
authors Ahlquist, Sean; McGee, Wes; Sharmin, Shahida
year 2017
title PneumaKnit: Actuated Architectures Through Wale- and Course-Wise Tubular Knit-Constrained Pneumatic Systems
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 38-51
doi https://doi.org/10.52842/conf.acadia.2017.038
summary This research explores the development of seamless pneumatically actuated systems whose motion is controlled by the combination of differentially knitted textiles and standardized thin-walled silicone tubing. This work proposes a fundamental material strategy that addresses challenges ranging from soft robotics to pneumatic architecture. Research in soft robotics seeks to achieve complex motions through non-mechanical monolithic systems, comprised of highly articulated shapes molded with a combination of elastic and inelastic materials. Inflatables in architecture focus largely on the active structuring of static forms, as facade systems or as structured envelopes. An emerging use of pneumatic architecture proposes morphable, adaptive systems accomplished through differentiated mechanically interconnected components. In the research described in this paper, a wide array of capabilities in motion and geometric articulation are accomplished through the design of knitted sleeves that generate a series of actuated “elbows.” As opposed to molding silicone bladders, differentiation in motion is generated through the more facile ability of changing stitch structure, and shaping of the knitted textile sleeve, which constrains the standard silicone tubing. The relationship between knit differentiation, pneumatic pressure, and the resultant motion profile is studied initially with individual actuators, and ultimately in propositions for larger seamless assemblies. As opposed to a cellular study of individual components, this research proposes structures with multi-scalar articulation, from fiber and stitch to overall form, composed into seamless, massively deformable architectures.
keywords material and construction; fabrication; construction/robotics
series ACADIA
email
last changed 2022/06/07 07:54

_id acadia17_52
id acadia17_52
authors Ajlouni, Rima
year 2017
title Simulation of Sound Diffusion Patterns of Fractal-Based Surface Profiles
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 52-61
doi https://doi.org/10.52842/conf.acadia.2017.052
summary Acoustical design is one of the most challenging aspects of architecture. A complex system of competing influences (e.g., space geometry, size, proportion, material properties, surface detail, etc.) contribute to shaping the quality of the auditory experience. In particular, architectural surfaces affect the way that sound reflections propagate through space. By diffusing the reflected sound energy, surface designs can promote a more homogeneous auditory atmosphere by mitigating sharp and focused reflections. One of the challenges with designing an effective diffuser is the need to respond to a wide band of sound wavelengths, which requires the surface profile to precisely encode a range of detail sizes, depths and angles. Most of the available sound diffusers are designed to respond to a narrow band of frequencies. In this context, fractal-based surface designs can provide a unique opportunity for mitigating such limitations. A key principle of fractal geometry is its multilevel hierarchical order, which enables the same pattern to occur at different scales. This characteristic makes it a potential candidate for diffusing a wider band of sound wavelengths. However, predicting the reflection patterns of complicated fractal-based surface designs can be challenging using available acoustical software. These tools are often costly, complicated and are not designed for predicting early sound propagation paths. This research argues that writing customized algorithms provides a valuable, free and efficient alternative for addressing targeted acoustical design problems. The paper presents a methodology for designing and testing a customized algorithm for predicting sound diffusion patterns of fractal-based surfaces. Both quantitative and qualitative approaches were used to develop the code and evaluate the results.
keywords design methods; information processing; simulation & optimization; data visualization
series ACADIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_184911 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002