CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 576

_id ecaade2017_008
id ecaade2017_008
authors Fukuda, Tomohiro, Inoue, Kazuya and Yabuki, Nobuyoshi
year 2017
title PhotoAR+DR2016 - Integrating Automatic Estimation of Green View Index and Augmented and Diminished Reality for Architectural Design Simulation
doi https://doi.org/10.52842/conf.ecaade.2017.2.495
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 495-502
summary Urban vegetation has been used to tackle architectural and urban problems by reducing urban heat islands and improving the quality of urban landscapes and biodiversity. The green view index provides end users with a metric to intuitively understand the vegetation scenarios. This study integrates a green view index estimation method and augmented reality (AR) and diminished reality (DR) scenes of future architectural and urban design simulations. We developed the AR/DR system "PhotoAR+DR2016 (photogrammetry-based augmented and diminished reality)" that simultaneously measures the green view index and simulates building, urban, and planting designs with addition, demolition, and removal of the objects such as structures. The developed system enables real-time measurement of the green view index by appropriately reducing the image size and extracting the green area. Using the developed prototype system, the on-site verification can be conducted; in addition, the processing speed and the accuracy and inaccuracy rates can be measured, and the green view index can be sufficiently measured in real time.
keywords Green View Index; Landscape assessment; Design support system; Diminished Reality; Augmented Reality; Image analysis
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2017_107
id caadria2017_107
authors Hu, Haojie, Luo, Zixuan, Chen, Yingnan, Bian, Qiuyi and Tong, Ziyu
year 2017
title Integration of Space Syntax into Agent-Based Pedestrian Simulation in Urban Open Space
doi https://doi.org/10.52842/conf.caadria.2017.325
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 325-334
summary MAS can be utilized to analyse macro rules of whole system by simulating a number of active agents. However, simply based on the parameter of specific environment quality and incomplete statistical setting of individual, models of pedestrian traffic in realistic open space have often been imperfect, because the behaviour of people cannot be rationally reflected to the complex characteristic of space. Space Syntax Theory breaks down the space into components and measures each with the straight sight-line of individuals, which can help analyse and quantify pedestrian flow in complicated real-life environment. In this situation, we make an attempt to combine these two in our research, in order to simulate the moving of pedestrian closer to reality. In this paper, Gulou Square, an urban open space close to centre of the city with a large flow of people, is selected as the study site. The results after plenty of simulations and contrast tests can be concluded that with the assistance of Space Syntax Theory, MAS can be more functional solving the problems in sophisticated real-life environment.
keywords Multi-agent system; Space Syntax; Open space; Visibility
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2017_291
id ecaade2017_291
authors Koltsova Jenne, Anastasia, Tunçer, Bige, Beir?o, José Nuno and Schmitt, Gerhard
year 2017
title Stratification of Public Spaces based on Qualitative Attribute Measurement
doi https://doi.org/10.52842/conf.ecaade.2017.2.581
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 581-590
summary This paper presents a computational setup for public space quality attribute measurement that leverages GIS technologies, remote access and actual databases. The goal of this research study is to objectify public space qualities established by prior research and verify these in a specific context. In particular, this work uses liveliness as a quality criterion for public space and analyses its interrelationship to space descriptive attributes represented by the objective characteristics of the existing public spaces. The main motivation of this research is to provide for better understanding of public space characteristics that support vibrant social life within contemporary urban settings in Europe.
keywords Urban Design; Public Space Quality; Liveliness; Integrative Analysis; Parametric Modelling; GIS
series eCAADe
email
last changed 2022/06/07 07:51

_id cf2017_112
id cf2017_112
authors de Klerk, Rui; Beirao, Jose Nuno
year 2017
title CIM-St: A Parametric Design System for Street Cross Sections
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 112.
summary City environment is very much determined by the design of its streets and in particular by the design of its cross section. This paper shows a street cross section design interface where designs are controlled by an ontology and a parametric design system. The system keeps its semantic structure through the ontology and provides a design interface that understands the computer interaction needed by the urban designer. Real time visual analytics are used to support the design decision process, allowing designers to objectively compare designs and measure the differences between them, in order to make informed decisions.
keywords Parametric design, Ontologies, Compound grammars, Street cross section, Urban design systems
series CAAD Futures
email
last changed 2017/12/01 14:37

_id ecaade2017_155
id ecaade2017_155
authors Beir?o, José Nuno and de Klerk, Rui
year 2017
title CIM-St - A Design Grammar for Street Cross Sections
doi https://doi.org/10.52842/conf.ecaade.2017.2.619
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 619-628
summary The design of streets plays an essential role in shaping the quality of our cities. In particular, the design of a street's cross section determines in many aspects the realm of its use, enhancing or reducing its ability for being walkable streets or traffic oriented streets. This paper shows a street cross section design interface where designs are controlled by an ontology and a parametric design system supported by a shape grammar. The ontology provides a semantically ordered vocabulary of shapes, symbols and descriptions upon which the grammar is defined. This paper focuses on the grammar definitions and its translation into a design oriented interface.
keywords Parametric Design; Ontologies; Compound Grammars; Street Cross Section; Urban Design Systems
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2017_064
id sigradi2017_064
authors Fonseca Motta, Silvio Romero; Ana Clara Moura Mourão, Ana Clara Moura Mourão, Suellen Roquete Ribeiro, Julia Marion Florencio Kato
year 2017
title Simulation of Scenarios and Urban Analysis Using Parametric Modeling and Genetic Algorithm Based on Multicriteria Analysis
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.434-440
summary The present paper surveys a method of changing the adequacy level of variables in multicriteria analysis (MCA) using parametric modeling. The aim is to simulate if-then scenarios to support resilience designs. The case study is a MCA for Pampulha region, Belo Horizonte, Brazil. The parametric model was developed in Grasshopper software, and defines, by knowledge-driven, a set of weight for an increased environmental quality which generates an index of suitability for each territorial unit. The if-then simulation changes the level of adequacy of 3 variables using a genetic algorithm, which calculates new distribution patterns for the MCA adequacy level.
keywords Multicriteria analysis; Parametric modeling; Genetic algorithm; Urban analysis; Scenario simulation.
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2017_199
id ecaade2017_199
authors Al-Douri, Ph.D., Firas
year 2017
title Computational and Modeling Tools - How effectively are Urban Designers and Planners using them Across the Design Development Process?
doi https://doi.org/10.52842/conf.ecaade.2017.1.409
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 409-418
summary Literature suggests that despite the increasing range and variety of computational tools and technologies, they have not really been employed for designing as extensively as it might be. This is due in part to the numerous challenges and impediments limiting their effective usage such as the methodological, procedural, and substantive factors and limitations, and skepticism about their impact of usage on the design process and outcome. The gap in our understanding of how advanced computational tools could support the design activities and design decision-making has expanded considerably to become a new area of inquiry with considerable room for the expansion of knowledge. This research is a single-case study that has been pursued in two phases: literature review and survey followed by analysis and discussion of the empirical results. The empirical observations were compared to the theoretical propositions and with results of similar research to highlight the areas and the extent to what the IT tools' usage have influenced the outcome of the design process. The comparison has helped highlight, explain, and justify the mechanism and improvements in the design outcome. Please write your abstract here by clicking this paragraph.
keywords Computational urban design; Urban Design Practice
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2017_234
id ecaade2017_234
authors Benetti, Alberto, Favargiotti, Sara and Ricci, Mos?
year 2017
title RE.S.U.ME. - REsilient and Smart Urban MEtabolism
doi https://doi.org/10.52842/conf.ecaade.2017.1.1113
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 1113-1120
summary New technologies and uncontrolled open-data policies lead public to a new way of approaching the built environment. To enlarge the competences of the professionals that work within the cities, we believe that providing a deep and dynamic knowledge on the heritage and urban built environment is the more effective solution to offer a unique support to the needs. By providing a boosted geographical database with detailed information about the status of each building, we aim to support the professional by providing a neat vision about vacant buildings available citywide. We think this knowledge is an important asset in covering every kind of public requests: from flat to rent to an abandoned building to restore or to drive better investors. The city of Trento will be the pilot project to test these statements.We studied the phenomenon of pushing new constructions rather investing on the reuse of abandoned buildings with the consequences of unsustainable land use. To address the work we adopted a comprehensive approach across the fields of urbanism, ICT engineering and social sciences. We believe that sharing knowledge and know-hows with municipalities, agencies, and citizens is the way to support better market strategies as well as urban transformation policies.
keywords Information Technology; Urban Metabolism; Re-cycle; Urban Reserves; Policy Decision-Making; Data-driven Analysis
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2017_100
id ecaade2017_100
authors Daniotti, Bruno, Lupica Spagnolo, Sonia, Mirarchi, Claudio, Pasini, Daniela and Pavan, Alberto
year 2017
title An Italian BIM-based portal to support collaborative design and construction - A case study on an enhanced use of information relying on a classification system and computational technical datasheets
doi https://doi.org/10.52842/conf.ecaade.2017.2.067
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 67-76
summary A great amount of information needs to be managed along the building life cycle in order to fulfil building codes, standards and regulations, client and user requirements. However, a lack of transparency in the information management and a lack of communication between stakeholders often bring to the adoption of solutions in the design process that do not meet the original requirements. Therefore, an ordered structure for information improves its storage, enhancing its visibility, traceability, usability and re-usability. In addition, for public works contracts and design contests, the use of specific electronic tools, such as building information electronic modelling tools, is often required for the information management. The paper presents the efforts devoted within the Italian building sector for proposing a standardized structure and developing tools for collecting, sharing and exchanging information between stakeholders involved in different stages of the building process. An enhanced use of information relying on the adoption of the standardized structure of information is presented, proposing dedicated applications for automating the process of information fruition.
keywords BIM-based portal; Standardized information; Computational technical datasheets
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2017_134
id ecaade2017_134
authors Del Signore, Marcella
year 2017
title pneuSENSE - Transcoding social ecologies
doi https://doi.org/10.52842/conf.ecaade.2017.2.537
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 537-544
summary Cities are continuously produced through entropic processes that mediate between complex networked systems and the immediacy urban life. Emergent media technologies inform new relationships between information and matter, code and space to redefine new urban ecosystems. Modes of perceiving, experiencing and inhabiting cities are radically changing along with a radical transformation of the tools that we use to design. Cities as complex and systemic organisms require approaches that engage new multi-scalar strategies to connect the physical layer with the system of networked ecologies. This paper aims at investigating emerging and novel forms of reading and producing urban spaces reimagining the physical city through intelligent and mediated processes. Through data agency and responsive urban processes, the design methodology explored the materialization of a temporary pneumatic structure and membrane that tested material performance through fabrication and sensing practices through the pneuSENSE project developed in July 2016 in New York at the Brooklyn Navy Yard during the 'HyperCities' IaaC- Institute for Advanced Architecture of Catalonia - Global Summer School.
keywords responsive urban processes; data agency ; reciprocity between micro (body) and macro (environment); dynamics of social ecologies; mapped-environment
series eCAADe
email
last changed 2022/06/07 07:55

_id cf2017_137
id cf2017_137
authors Ensari, Elif; Kobas, Bilge; Sucuo?lu, Can
year 2017
title Computational Decision Support for an Airport Complex Roof Design: A Case Study of Evolutionary Optimization for Daylight Provision and Overheating Prevention
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 137-149.
summary This study focuses on generating geometric design alternatives for an airport roof structure with an evolutionary design method based on optimizing solar heat gain and daylight levels. The method incorporates a parametric 3D model of the building, a multi objective genetic algorithm that was linked with the model to iteratively test for various geometric solutions, a custom module that was developed to simulate solar conditions, and external energy simulation environments that was used to validate the outcomes. The integral outcome was achieved through an iterative workflow of many software tools, and the study is significant in dealing with several space typologies at the same time, taking real-life constraints such as applicability, ease of operation, construction loads into consideration, and satisfying design and aesthetic requirements of the architectural design team.
keywords Evolutionary algorithms, daylight and energy performance, multi-objective optimization
series CAAD Futures
email
last changed 2017/12/01 14:37

_id ecaade2017_255
id ecaade2017_255
authors Heinrich, Mary Katherine, Ayres, Phil and Bar-Yam, Yaneer
year 2017
title A Multiscale Model of Morphological Complexity in Cities - Characterising Emergent Homogeneity and Heterogeneity
doi https://doi.org/10.52842/conf.ecaade.2017.2.561
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 561-570
summary Approaches from complex systems science can support design decision-making by extracting important information about key dependencies from large, unstructured data sources. This paper presents an initial case study applying such approaches to city structure, by characterising low-level features and aggregate properties of artifact morphology in urban areas. First, shape analysis is used to describe microscale artifact clusters, analysed in aggregate to characterise macroscale homogeneity and heterogeneity. The characterisation is used to analyse real-world example cities, from both historic maps and present-day crowdsourced data, testing against two performance evaluation criteria. Next, the characterisation is used to generate simple artificial morphologies, suggesting directions for future development. Finally, results and extensions are discussed, including real-world applications for decision support.
keywords Complex systems; morphology; shape analysis; urban planning
series eCAADe
email
last changed 2022/06/07 07:49

_id cf2017_111
id cf2017_111
authors Kepczynska-Walczak, Anetta; Pietrzak, Anna
year 2017
title An Experimental Methodology for Urban Morphology Analysis
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 111.
summary The paper presents results of a research conducted in 2015 and 2016 at Lodz University of Technology. It proposes a purpose and context fit approach towards the automation of urban data generation based on GIS tools and New Urbanism typologies. First, background studies of methods applied in urban morphology analysis are revealed. Form-Based Code planning, and subsequently Transect-Based Code are taken into account. Then, selected examples from literature are described and discussed. Finally, the research study is presented and the outcomes compared with more traditional methodology.
keywords GIS, Urban morphology, Spatial analysis, Decision support systems, Urban design, Data analytics, Modelling and simulation
series CAAD Futures
email
last changed 2017/12/01 14:37

_id caadria2017_004
id caadria2017_004
authors Lo, Tian Tian, Schnabel, Marc Aurel and Moleta, Tane J.
year 2017
title Gamification for User-Oriented Housing Design - A Theoretical Review
doi https://doi.org/10.52842/conf.caadria.2017.063
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 63-72
summary Fluctuating economies and changing family demographics have increased the complexity in meeting the spatial needs for contemporary housing. Digital systems that allow flexibility are growing in demand but its rate of development is not catching up with the rapid changes. This paper explores how digital interventions can limit or help the process of collaborative design in high-density mass housing context. One key factor in user-oriented design system is participation. Many researchers have looked into system usability, design simplification and realistic visualisation to provide an immersive experience for users to engage the design. This paper argues how gamification acts as a form of decision support within a bigger framework model for a user-oriented digital design system. Using three levels of rules: constitutive rules, operational rules and implicit rules, the aim is for users to generate a housing design outcome not only for themselves but also collaboratively with other users through gamification.
keywords gamification; user-oriented; digital intervention; decision support; mass housing
series CAADRIA
email
last changed 2022/06/07 07:59

_id cf2017_513
id cf2017_513
authors Milovanovic, Julie; Moreau, Guillaume; Siret, Daniel; Miguet, Francis
year 2017
title Virtual and Augmented Reality in Architectural Design and Education: An Immersive Multimodal Platform to Support Architectural Pedagogy
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 513-532.
summary Virtual Reality and Augmented Reality research in the architecture field show a variety of possible uses of systems to accompany designers, laymen and decision makers in their architectural design process. This article provides a survey of VR and AR devices among a corpus of papers selected from conferences and journals on CAAD (Computer Aided Architectural Design). A closer look at some specific research projects highlights their potentials and limits, which formalize milestones for future challenges to address. Identifying advantages and drawbacks of those devices gave us insights to propose an alternative type of system, CORAULIS, including both VR and SAR technologies, in order to support collaborative design to be implemented in a pedagogical environment.
keywords Augmented Reality, Virtual Reality, Design Education, Architectural Design
series CAAD Futures
email
last changed 2017/12/01 14:38

_id cf2017_630
id cf2017_630
authors Muehlbauer, Manuel; Song, Andy; Burry, Jane
year 2017
title Towards Intelligent Control in Generative Design
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 630-647.
summary This position paper proposes and defines the nature of a framework, which explores ways of integrating control system (CS) with machine intelligence for generative design (GD). This paper elaborates about the implications of and the potential for impact on GD. The framework described in this work can be used as an active tool to drive design processes and support decision making process in early stages of architectural design. This type of system can be either automated in nature or adaptive to regular user input as part of interactive design mechanisms. The module of CS in the framework would allow additional guidance during design and therefore reduce the need of manual input to enable a semi-automated design practice for lengthy generative processes. This study on GD reveals emergent properties of the framework, for example the introduction of intelligent control allows guidance of GD to meet specified performance criteria and intended aesthetic expressions with reduced need for user interaction.
keywords Semi-Automated Design, Evolutionary Architecture, Generative Design, Architectural Optimisation, Artificial Intelligence
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ecaade2017_091
id ecaade2017_091
authors Schubert, Gerhard, Bratoev, Ivan and Petzold, Frank
year 2017
title Visual Programming meets Tangible Interfaces - Generating city simulations for decision support in early design stages
doi https://doi.org/10.52842/conf.ecaade.2017.1.515
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 515-522
summary The utilization of visual programming languages (VPL) as tools for generating complex simulations has seen a constant increase in application in architect planning phases. The major advantage of such languages is, that they enable the user to create programs without needing traditional software development skills. In the last few years the CDP // Collaborative Design Platform was developed that seamlessly connects physical models with analyses and simulations in real-time. To facilitate an easier creation, modification and user interaction with the individual simulations, a VPL and an accompanying IDE were conceptualized and developed. In the context of this paper the core requirements, the concept and prototypical implementation of these new components are described in detail.
keywords visual programming language; tangible interface; simulation; urban planning
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2017_156
id ecaade2017_156
authors Tunçer, Bige and You, Linlin
year 2017
title Informed Design Platform - Multi-modal Data to Support Urban Design Decision Making
doi https://doi.org/10.52842/conf.ecaade.2017.2.545
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 545-552
summary Evidence based urban design and planning support benefits from providing designers with multi-source, multi-scale and multi-time information, which is both 'big' and 'small', and quantitative and qualitative. We are developing a platform, namely Informed Design Platform, that adopts a (big) data driven approach to derive insights and principles in order to adaptively design or re-design various forms of urban public spaces based on usage patterns and perceptions of the public. This platform is designed using a four step methodology of data collection, integration, analysis, and visualization. Multi-source data is integrated based on three analysis dimensions: place, time and people; and four analysis pillars: utilization, activity, opinion and sensing. This paper describes the aims, the design principles, and partial results of development of this platform.
keywords Evidence based urban design; Multi-modal data; Information modeling; Information visualization
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia17_630
id acadia17_630
authors Vasanthakumar, Saeran; Saha, Nirvik; Haymaker, John; Shelden, Dennis
year 2017
title Bibil: A Performance-Based Framework to Determine Built Form Guidelines
doi https://doi.org/10.52842/conf.acadia.2017.630
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 630- 639
summary City built-form guidelines act as durable constraints on building design decisions. Such guidelines directly impact energy, comfort and other performance conditions. Existing urban design and planning methods only consider a narrow range of potential design scenarios, with rudimentary performance criteria, resulting in suboptimal urban designs. Bibil is a software plugin for the Rhinoceros3D/Grasshopper3D CAD modeler that addresses this gap through the synthesis of design space exploration methods to help design teams optimize guidelines for environmental and energy performance criteria over the life cycle of the city. Bibil consists of three generative and data management modules. The first module simulates development scenarios from street and block information through time, the second designs appropriate architectural typology, and the third abstracts the typologies into a lightweight analysis model for detailed thermal load and energy simulation. State-of-the-art performance simulation is done via the Ladybug Analysis Tools Grasshopper3D plugin, and further bespoke analysis to explore the resulting design space is achieved with custom Python scripts.This paper first introduces relevant background for automated exploration of urban design guidelines. Then the paper surveys the state-of-the-art in design and performance simulation tools in the urban domain. Next the paper describes the beta version of the tool’s three modules and its application in a built form study to assess urban canyon performance in a major North American city. Bibil enables the exploration of a broader range of potential design scenarios, for a broader range of performance criteria, over a longer period of time.
keywords design methods; information processing; simulation & optimization; form finding; generative system
series ACADIA
email
last changed 2022/06/07 07:58

_id acadia17_52
id acadia17_52
authors Ajlouni, Rima
year 2017
title Simulation of Sound Diffusion Patterns of Fractal-Based Surface Profiles
doi https://doi.org/10.52842/conf.acadia.2017.052
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 52-61
summary Acoustical design is one of the most challenging aspects of architecture. A complex system of competing influences (e.g., space geometry, size, proportion, material properties, surface detail, etc.) contribute to shaping the quality of the auditory experience. In particular, architectural surfaces affect the way that sound reflections propagate through space. By diffusing the reflected sound energy, surface designs can promote a more homogeneous auditory atmosphere by mitigating sharp and focused reflections. One of the challenges with designing an effective diffuser is the need to respond to a wide band of sound wavelengths, which requires the surface profile to precisely encode a range of detail sizes, depths and angles. Most of the available sound diffusers are designed to respond to a narrow band of frequencies. In this context, fractal-based surface designs can provide a unique opportunity for mitigating such limitations. A key principle of fractal geometry is its multilevel hierarchical order, which enables the same pattern to occur at different scales. This characteristic makes it a potential candidate for diffusing a wider band of sound wavelengths. However, predicting the reflection patterns of complicated fractal-based surface designs can be challenging using available acoustical software. These tools are often costly, complicated and are not designed for predicting early sound propagation paths. This research argues that writing customized algorithms provides a valuable, free and efficient alternative for addressing targeted acoustical design problems. The paper presents a methodology for designing and testing a customized algorithm for predicting sound diffusion patterns of fractal-based surfaces. Both quantitative and qualitative approaches were used to develop the code and evaluate the results.
keywords design methods; information processing; simulation & optimization; data visualization
series ACADIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_188744 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002