CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 567

_id ecaade2017_111
id ecaade2017_111
authors Odom, Clay
year 2017
title Articulate Objects - hard processes and soft effects
doi https://doi.org/10.52842/conf.ecaade.2017.2.097
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 97-106
summary If the design of environments and experiences has become a key concern for many contemporary designers and artists, then what is the medium that becomes most prevalent? Light. Although elusive (one might even say 'withdrawn') and transitory, light can be seen as both objective and subjective content that is being explored by contemporary artists, designers, and architects. , In addition, the very ephemeral quality of human experience means that light (although it is a condition which is made visible, objectified and transformed through its interactions with form and surface) is often, and strangely, disassociated from objective criteria. This paper uses two recently completed projects to outline an approach to overcoming tendency to separate the objective and subjective. It describes an approach which is positioned within contemporary theory and explored through processes, methods and outcomes. The work outlined explores how effects are theorized and instrumentalized through design processes not only as subjective or 'soft', effective, atmospheric conditions, but as affective drivers of objective or 'hard' processes.
series eCAADe
email
last changed 2022/06/07 08:00

_id acadia17_62
id acadia17_62
authors Al-Assaf, Nancy S.; Clayton, Mark J.
year 2017
title Representing the Aesthetics of Richard Meier’s Houses Using Building Information Modeling
doi https://doi.org/10.52842/conf.acadia.2017.062
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 62-71
summary Beyond its widespread use for representing technical aspects and matters of building and construction science, Building information modeling (BIM) can be used to represent architectural relationships and rules drawn from aesthetic theory. This research suggests that BIM provides not only vocabulary but also syntactical tools that can be used to capture an architectural language. In a case study using Richard Meier’s language for single-family detached houses, a BIM template has been devised to represent the aesthetic concepts and relations therein. The template employs parameterized conceptual mass objects, syntactical rules, and a library of architectonic elements, such as walls, roofs, columns, windows, doors, and railings. It constrains any design produced using the template to a grammatically consistent expression or style. The template has been used as the starting point for modeling the Smith House, the Douglas House, and others created by the authors, demonstrating that the aesthetic template is general to many variations. Designing with the template to produce a unique but conforming design further illustrates the generality and expressiveness of the language. Having made the formal language explicit, in terms of syntactical rules and vocabulary, it becomes easier to vary the formal grammar and concrete vocabulary to produce variant languages and styles. Accordingly, this approach is not limited to a specific style, such as Richard Meier's. Future research can be conducted to demonstrate how designing with BIM can support stylistic change. Adoption of this approach in practice could improve the consistency of architectural designs and their coherence to defined styles, potentially increasing the general level of aesthetic expression in our built environment.
keywords design methods; information processing; BIM; education
series ACADIA
email
last changed 2022/06/07 07:54

_id ijac201715101
id ijac201715101
authors Bieg, Kory and Clay Odom
year 2017
title Lumifoil and Tschumi: Virtual projections and architectural interventions
source International Journal of Architectural Computing vol. 15 - no. 1, 6-17
summary This article introduces the theoretical and technical framework for the design of a temporary rooftop canopy on the red generator—one of the buildings designed by Bernard Tschumi for the Florida International University School of Architecture. The project, Lumifoil, was designed using both top-down and bottom-up computational techniques, including surface modeling via projected geometries and scripted cellular subdivisions and assemblies. Lumifoil attempts to synthesize these two often-conflicting design approaches into a generative design process which leverages context, form, surface, and structure as affective and effective actors. Lumifoil is the result of a design methodology which is both active and reactive to existing conditions of the site and new opportunities afforded by the program. It is contextual in its top-down relationship to Tschumi’s existing building and theory, generative in how details emerge bottom-up through scripts which lack any reference to site, and emergent in the resulting synthetic processes and effects which are produced. Through this methodological development, the project both tracks and responds to popular architectural theory and design from the mid-1990s to today. The theoretical underpinnings of the project build upon the idea that the actual (the real-life physical manifestation of matter) and the virtual (the potential for an object to be) are two constantly shifting paradigms in which design processes can intervene to help develop an architectural solution from a range of possibilities. The technical aspect of the project includes the collaborative workflow between the architecture offices of OTA+ and studio MODO with Arup Engineers to resolve structural issues using parametric modeling tools and structural analysis software. The final project is entirely parametric and fabrication is completely automated.
keywords Tschumi, Parametric, Installation, Generative, Projection
series other
type normal paper
email
last changed 2019/08/02 08:16

_id ecaade2017_046
id ecaade2017_046
authors Ezzat, Mohammed
year 2017
title Implementing the General Theory for Finding the Lightest Manmade Structures Using Voronoi and Delaunay
doi https://doi.org/10.52842/conf.ecaade.2017.2.241
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 241-250
summary In previous efforts, the foundation of a general theory that searches for finding lightest manmade structures using the Delaunay diagram or its dual the Voronoi diagram was set (Ezzat, 2016). That foundation rests on using a simple and computationally cheap Centroid method. The simple Centroid method is expected to play a crucial role in the more sophisticated general theory. The Centroid method was simply about classifying a cloud of points that represents specific load case/s stresses on any object. That classification keeps changing using mathematical functions until optimal structures are found. The point cloud then is classified into different smaller points' groups; each of these groups was represented by a single positional point that is related to the points' group mean. Those representational points were used to generate the Delaunay or Voronoi diagrams, which are tested structurally to prove or disprove the optimality of the classification. There was not a single optimized classification out of that process but rather a family of them. The point cloud was the input to the centroid structural optimization, and the family of the optimized centroid method is the input to our proposed implementation of the general theory (see Figure 1). The centroid method produced promising optimized structures that performed from five to ten times better than the other tested variations. The centroid method was implemented using the two structural plugins of Millipede and Karmaba, which run under the environment of the Grasshopper plugin. The optimization itself is done using the grasshopper's component of Galapagos.
keywords Agent-based structural optimization; Evolutionary conceptual tree representation; Heuristic structural knowledge acquisition ; Centroid structural classification optimization method
series eCAADe
email
last changed 2022/06/07 07:55

_id ascaad2021_065
id ascaad2021_065
authors Fraschini, Matteo; Julian Raxworthy
year 2021
title Territories Made by Measure: The Parametric as a Way of Teaching Urban Design Theory
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 494-506
summary Design tools like Grasshopper are often used to either generate novel forms, to automate certain design processes or to incorporate scientific factors. However, any Grasshopper definition has certain assumptions about design and space built into it from its earliest genesis, when the initial algorithm is set out. Correspondingly, implicit theoretical positions are built into definitions, and therefore its results. Approaching parametric design as a question of architectural, landscape architectural or urban design theory allows the breaking down of traditional boundaries between the technical and the historical or theoretical, and the way parametric design, and urban design history & theory, can be conveyed in the teaching environment. Once the boundaries between software and history & theory are transgressed, Grasshopper can be a way of testing the principles embedded in historical designs and thus these two disciplines can be joined. In urban design, there is an inherent clash between an ideal model and existing urban geography or morphology, and also between formal (qualitative) and numerical (quantitative) aspects. If a model provides a necessary vision for future development, an existing topography then results from the continuous human and natural modifications of a territory. To explore this hypothesis, the “Urban Design Representation” subject in the Master of Urban Design program at the University of Cape Town taught in 2017 & 2018 was approached “parametrically” from these two opposite, albeit convergent, starting points: the conceptual/rational versus the physical/empiric representations of a territory. In this framework, Grasshopper was used to represent typical standards and parameters of modern urban planning (for example, Floor/Area Ratio, height and distance between buildings, site coverage, etc), and a typological approach was adopted to study and “decode” the relationship between public and private space, between the street, the block and topography, between solids and voids. This methodology permits a cross-comparison of different urban design models and the immediate evaluation of their formal outputs derived from parametric data.
series ASCAAD
email
last changed 2021/08/09 13:13

_id cf2017_533
id cf2017_533
authors El-Zanfaly, Dina; Abdelmohsen, Sherif
year 2017
title Imitation in Action: A Pedagogical Approach for Making Kinetic Structures
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 533-545.
summary One of the problems in teaching students how to design kinetic architecture is the difficulty of helping them grasp concepts like motion, physical computing and fabrication, concepts not generally dealt with in conventional architectural projects. In this paper, we introduce a pedagogical method for better utilizing prototyping and explore the role prototyping plays in learning and conceptualizing design ideas. Our method is based on building the learner’s sensory experience through iteration and focusing on the process as well as the product. Specifically, our research attempts to address the following questions: How can architecture students anticipate and feel motion while they design kinetic prototypes? How do their prototypes enable them to explore design ideas? As a case study, we applied our methodology in an 8-week workshop in a fabrication laboratory in Cairo, Egypt. The workshop was open to young architects and students who had completed at least four semesters of study at the university. We describe the pedagogical approach we developed to build the sensory experience of making motion, and demonstrate the basic setting and stages of the workshop. We show how a cyclical learning process, based on perception and action -- copying and iteration -- contributed to the students’ learning experience and enabled them to create and improvise on their own.
keywords Kinetic Architecture, Digital Fabrication, Sensory Experience, Computational Making, Imitation
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ecaade2018_194
id ecaade2018_194
authors Paixao, Jose, Fend, Florian and Hirschberg, Urs
year 2018
title Break It Till You Make It - A design studio for problem-finding
doi https://doi.org/10.52842/conf.ecaade.2018.1.753
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 753-762
summary In a context where architectural education is undergoing great transformations due to the impact of digital technology, the authors present a design studio model that rather than teaching how to operate the tool en vogue focuses on the formulation of questions. Traditional pedagogic practices have privileged answers in knowledge production, but an alternative is proposed. A methodology was devised in which problem-finding is moved forward by an iterative process of experimental making. This was tested in Winter 2017 with results showing a diversity in questions raised, but also the premature discontinuation of several paths of inquiry. Only one completed all 6 planned iterations and benefited from the final, in which the building of a 1:1 prototype informed its research focus. The conclusions highlight the contribution of this model in preparing future practitioners with an attitude of inquiry and drive to experiment that will resist obsoleteness from rapid technological developments.
keywords Architectural Education; Design Studio; Problem-Based Learning; Material Systems; Digital Fabrication; Wood Construction
series eCAADe
email
last changed 2022/06/07 08:00

_id cf2017_461
id cf2017_461
authors Stals, Adeline; Catherine, Elsen; Jancart, Sylvie
year 2017
title Practical Trajectories of Parametric Tools in Small and Medium Architectural Firms
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 461-473.
summary Initially used as an extension of hand-drawing tools, digital design tools and moreover parametric ones are nowadays deeply modifying the architectural design process. Big offices with star-architects were able to adopt these tools but most architects working in a small office are still trying to cope with these parametric design tools. Several questions arise in this regard: what digital tools do architects usually use? Do they express interest for new technologies and software such as parametric ones? What is their understanding of the term “parametric architecture”? Why is this kind of tools still not largely adopted? Going through the results of an online survey, this paper first discusses the meaning of parametric design for architects. The contribution then analyzes the Belgian case regrouping mostly small and medium offices. It reflects particularly on the way architects do or do not implement these new digital tools in their workflows, and it sheds light on the fact that parametric tools also have the potential to free the creativity of SME’s.
keywords Complexity of Digital Tools, Parametric Tools, Small Architectural Firms
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ijac201715402
id ijac201715402
authors Alaçam, Sema; Orkan Zeynel Güzelci, Ethem Gürer and Saadet Zeynep Bac?noglu
year 2017
title Reconnoitring computational potentials of the vault-like forms: Thinking aloud on muqarnas tectonics
source International Journal of Architectural Computing vol. 15 - no. 4, 285-303
summary This study sheds light on a holistic understanding of muqarnas with its historical, philosophical and conceptual backgrounds on one hand and formal, structural and algorithmic principles on the other hand. The vault-like Islamic architectural element, muqarnas, is generally considered to be a non-structural decorative element. Various compositional approaches have been proposed to reveal the inner logic of these complex geometric elements. Each of these approaches uses different techniques such as measuring, unit-based decoding or three-dimensional interpretation of two-dimensional patterns. However, the reflections of the inner logic onto different contexts, such as the usage of different initial geometries, materials or performative concerns, were neglected. In this study, we offer a new schema to approach the performative aspects of muqarnas tectonics. This schema contains new sets of elements, properties and relations deriving partly from previous approaches and partly from the technique of folding. Thus, this study first reviews the previous approaches to analyse the geometric and constructional principles of muqarnas. Second, it explains the proposed scheme through a series of algorithmic form-finding experiments. In these experiments, we question whether ‘fold’, as one of the performative techniques of making three-dimensional forms, contributes to the analysis of muqarnas in both a conceptual and computational sense. We argue that encoding vault-like systems via geometric and algorithmic relations based on the logic of the ‘fold’ provides informative and intuitive feedback for form-finding, specifically in the earlier phases of design. While focusing on the performative potential of a specific fold operation, we introduced the concept of bifurcation to describe the generative characteristics of folding technique and the way of subdividing the form with respect to redistribution of the forces. Thus, in this decoding process, the bifurcated fold explains not only to demystify the formal logic of muqarnas but also to generate new forms without losing contextual conditions.
keywords Muqarnas, vault, layering, folding, force flow, bifurcation
series journal
email
last changed 2019/08/07 14:03

_id caadria2017_182
id caadria2017_182
authors Austin, Matthew
year 2017
title The Other Digital - What is the Glitch in Architecture?
doi https://doi.org/10.52842/conf.caadria.2017.551
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 551-559
summary This paper will discuss and investigate the issues with the concept of 'glitch' in architecture. There are currently two definitions that sit in a symbiotic relationship with each other; Moradi's (2004) and Menkman's (2011). This paper will explore the implications of these two approaches, while investigating the possibility of a third, unique definition (the encoded transform), and what effect they have on the possibility for a 'glitch architecture'. The paper will then focus on the glitches' capacity to be disruptive within the design process. In the context of architecture, it has been previously argued that the inclusion of glitches within a design process can easily create a process that does not 'converge' to a desired design outcome, but instead shifts haphazardly within a set of family resemblances (Austin & Perin 2015). Further to this, it will be revealed that this 'divergent' quality of glitches is due to the encoded nature of architectural production.
keywords Glitch aesthetics; Theory; Algorithmic Design; Process.
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia17_128
id acadia17_128
authors Bacharidou, Maroula
year 2017
title Touch, See, Make: Employing Active Touch in Computational Making
doi https://doi.org/10.52842/conf.acadia.2017.128
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 128-137
summary In architectural education and practice, we don’t come in physical contact with what we make until the later stages of the design process. This vision-oriented approach to design is something deeply rooted in architectural practice: from Alberti’s window to the screens of our computers, design has traditionally been more of a visual and less of a hands-on process. The vision of the presented study is that if we want to understand the way we make in order to improve tools for computational design and making, we need to understand how our ability to make things is enhanced by both our visual and tactile mechanisms. Bringing the notion of active touch from psychology into the design studio, I design and execute a series of experiments investigating how seeing, touching, or seeing and touching exhibit different sensory competencies, and how these competencies are expressed through the process of making. The subjects of the experiment are asked to tactilely, visually, or tactilely and visually observe a three-dimensional object, create descriptions of its composition, and to remake it based on their experience of it using plastic materials. After the execution of the experiment, I analyze twenty-one reproductions of the original object; I point to ways in which touch can detect scale and proportions more accurately than vision, while vision can detect spatial components more efficiently than touch; I then propose ways in which this series of experiments can lead to the creation of new design and making tools.
keywords education society & culture; computational / artistic culture;s hybrid practices; digital craft; manual craft
series ACADIA
email
last changed 2022/06/07 07:54

_id ecaade2017_027
id ecaade2017_027
authors Carl, Timo, Schein, Markus and Stepper, Frank
year 2017
title Sun Shades - About Designing Adaptable Solar Facades
doi https://doi.org/10.52842/conf.ecaade.2017.2.165
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 165-174
summary External shading structures are a well-established typology for reducing solar heat loads. A major disadvantage is their inflexible nature, blocking views from inside and desired solar radiation for seasons with less sunshine hours. An adaptive approach on the other end can accommodate dynamic environmental exchange and user control. Furthermore, kinetic movement has great potential to create expressive spatial structures. However, such typologies are inherently complex. This paper presents the design process for two novel adaptive façade typologies, conducted on an experimental level in an educational context. Moreover, we will discuss the conception of a suitable methodological framework, which we applied to engage the complexity of this design task. Thereby we will highlight the importance of employing various methods, combining analogue and computational models not in a linear sequence, but rather in an overlapping, iterative way to create an innovation friendly design setting. The Sun Shades project offers insight into the relationships between design potentials inherent in adaptable structures and the advantages and limitation of computational methods employed to tackle them.
keywords computational design methodology; performance-based design; associative geometry modelling; solar simulation; physical form-finding; design theory
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2017_031
id ecaade2017_031
authors Castelo Branco, Renata and Leit?o, António
year 2017
title Integrated Algorithmic Design - A single-script approach for multiple design tasks
doi https://doi.org/10.52842/conf.ecaade.2017.1.729
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 729-738
summary Many great architectural endeavors today engage in a multi software approach, as each specialty involved needs a different software, and different task required from the architect, such as 3D modeling, analysis or rendering, also benefit from the use of different tools. Combining them in the same process is not always a successful endeavor. A more effective portability mechanism is needed, and Algorithmic Design (AD) has the potential to become one. This paper explores the advantages of the algorithmic approach to the design process, and proposes a methodology capable of integrating the different tools and paradigms currently used in architecture. The methodology is based on the development of a computer program that describes not only the intended model, but also additional tasks, such as the required analysis and rendering. It takes advantage of CAD, BIM and analysis tools, with little effort when it comes to the transition between them.
keywords Algorithmic Design; CAD; BIM; Analysis tools
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2017_030
id sigradi2017_030
authors de Menezes, Marly; Ricardo Bontempo, Marcelo Falco, Augusto Gottsfritz
year 2017
title A prática da teoria – vivenciando a Internet das Coisas na mobilidade urbana. [The practice of theory - experiencing the Internet of Things in urban mobility.]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.214-218
summary This article will present the development of the discipline of Interdisciplinary Project - Digital Design and Internet of Things, taught in the superior course of Digital Design, of Anhembi Morumbi University, through the application of the concepts of Active Methodologies. The principles inherent to projects related to the Internet of Things (IoT) such as efficiency, ease and intelligence, applied to current and future needs of society, will be demonstrated through the work of a group of students who have developed a device directed to the area of urban mobility For the help of users of collective public transportation in the city of São Paulo.
keywords Digital Design, Internet of Things, IoT, Urban Mobility, Teaching
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2017_229
id ecaade2017_229
authors Decker, Martina
year 2017
title Soft Human Computer Interfaces - Towards Soft Robotics in Architecture
doi https://doi.org/10.52842/conf.ecaade.2017.2.739
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 739-744
summary The emergence of media infused facades and new human computer interfaces have been of great interest in architecture in the recent decades. Most of the emerging examples are geared towards a multi-dimensional graphical output and most commonly stimulate our sense of sight. This paper explores recent developments in soft robotics and material sciences, developed at the Material Dynamics Lab at NJIT, that will allow the human computer interfaces to engage its users by captivating a multitude of senses simultaneously. Furthermore, this paper will contemplate future trajectories for the novel material strategies to improve human-computer or human-robot interaction, that one day may lead to truly robotic architectures.
keywords Soft Robotics; Nanotechnology; Smart Materials; Robotic Architecture; Human Computer Interfaces (HCI); Graphical User Interfaces (GUI) to Tangible User Interfaces (TUI)
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2017_290
id ecaade2017_290
authors Di Giuda, Giuseppe Martino, Villa, Valentina, Ciribini, Angelo Luigi Camillo and Tagliabue, Lavinia Chiara
year 2017
title Theory of Games and Contracts to define the Client role in Building Information Modeling
doi https://doi.org/10.52842/conf.ecaade.2017.1.161
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 161-168
summary This research focus on the application of Theory of Games and asymmetry information to the AEC sector underling the impact of these theories to the supply chain and in particular on the evolution of the client role in a Building Information Modeling process. The mentioned theories used to be applied to macroeconomic fields, but allowed the researchers to understand the evolution of the sector and the internal behavior of the team. This analysis of team behaviors permits to grasp how the contractual frame could hold up the natural trend of the market to collaborate, which leads the sector to improve itself. The Theory of Games could be adopted as a hermeneutic tool for understanding actions and agreements to which the various parties achieve. The research provided a global analysis on the evolution of the client role in a cyclical process. Further development of the research will be the application of the theory to a real case study to catch the real team behavior in a collaborative environment.
keywords Building Information Modeling; game theory; contracts theory; hermeneutical approach
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia17_222
id acadia17_222
authors Dierichs, Karola; Wood, Dylan; Correa, David; Menges, Achim
year 2017
title Smart Granular Materials: Prototypes for Hygroscopically Actuated Shape-Changing Particles
doi https://doi.org/10.52842/conf.acadia.2017.222
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 222-231
summary Hygroscopically Actuated Granular Materials are a new class of designed granular materials in architecture. Granular materials are large numbers of particles that are only in loose contact with each other. If the individual particle in such a granular material is defined in its geometry and material make-up, one can speak of a designed granular material. In recent years these designed granular materials have been explored as architectural construction systems. Since the particles are not bound to each other, granular materials are rapidly reconfigurable and recyclable. Yet one of the biggest assets of designed granular materials is the fact that their overall behavior can be designed by altering the geometry or material make-up of the individual composing particles. Up until now mainly non-actuated granular materials have been investigated. These are designed granular materials in which the geometry of the particle stays the same over time. The proposed Hygroscopically Actuated Granular Materials are systems consisting of time-variable particle geometries. Their potential lies in the fact that one and the same granular system can be designed to display different mechanical behaviors over the course of time. The research presented here encompasses three case studies, which complement each other both with regard to the development of the particle system and the applied construction processes. All three cases are described both with regard to the methods used and the eventual outcome aiming at a potential design system for Hygroscopically Actuated Granular Materials. To conclude, these results are compared and directions of further research are indicated.
keywords material and construction; smart materials; smart assembly/construction
series ACADIA
email
last changed 2022/06/07 07:55

_id acadia17_232
id acadia17_232
authors Doyle, Shelby; Forehand, Leslie; Senske, Nick
year 2017
title Computational Feminism: Searching for Cyborgs
doi https://doi.org/10.52842/conf.acadia.2017.232
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 232-237
summary As computational design matures, the discipline is in a position to address an increasing number of cultural dimensions: social, political, and ethical. This paper examines the gender gap in computational design and proposes an agenda to achieve gender equality. Data from architectural publications and the CumInCAD database provide metrics for measuring the segregation between feminist and computational discourse. Examples of feminist theory establish possible entry points within computational design to bridge the gaps in gender equity and representation. Specifically, the authors re-examine 1990s networked feminism in relation to the computational culture of today. The paper concludes with a proposed definition of Computational Feminism as a social, political, and ethical discourse. This definition appropriates Donna Haraway’s cyborg as its symbolic instrument of equality.
keywords design methods; information processing; education; representation; computational / artistic cultures
series ACADIA
email
last changed 2022/06/07 07:55

_id caadria2017_023
id caadria2017_023
authors Gero, John S
year 2017
title Generalizing Ekphrastic Expression - A Foundation for a Computational Method to Aid Creative Design
doi https://doi.org/10.52842/conf.caadria.2017.345
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 345-354
summary This paper presents the results from exploring the concept of ekphrastic expression as the foundation for a computation method to aid creative design. Ekphrasis or ekphrastic expression is the expression of a concept that is represented in one medium in another separate medium. The paper describes the concepts of ekphrastic expression and presents two implemented examples that demonstrate the method and produce new results. The first example involves the creation of new shapes through representing the shape designs in the evolutionary domain and introducing new operators within that domain beyond the standard evolutionary operators of crossover and mutation. The second example involves the creation of new genes to represent aspects of Frank Lloyd Wright's Prairie House style. This generates a space of genomes beyond those that were there at the commencement of the process. New designs that could not be directly produced in the original domain are generated.
keywords creative design; ekphrastic expression; design method
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2017_021
id caadria2017_021
authors Hwang, Ji-Hyoun and Lee, Hyunsoo
year 2017
title 3D Visual Simulation and Numerical Measurement of Privacy in Traditional Korean Palace
doi https://doi.org/10.52842/conf.caadria.2017.355
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 355-363
summary Traditional Korean architecture provides privacy through a proper balance of openness and enclosure through courtyard gardens. However, it is difficult to analyse privacy quantitatively in a three-dimensional space. The analysis of visual privacy is a significant issue in resolving conflicts and enhancing comfort. This paper develops a computational algorithm for simulating and measuring privacy on the concept of prospect and refuge: a design strategy for psychological wellbeing. In order to visualize privacy, the prospect area ratio (PAR) and refuge area ratio (RAR) are used in 3D visual simulations. PAR and RAR calculate the area ratio of the hiding space or the visible space in the images collected from the 3D model. In addition, parametric algorithms are proposed to calculate PAR/RAR automatically. Finally, this research demonstrates a case study of Gyeongbokgung, one of the five palace buildings in Korea, to show methods and processes of the quantitative analysis of visual privacy. The outcome of this paper contributes to quantitative confirmation of spatial characteristics that clearly distinguish between public space and private space of Gyeongbokgung. The proposed method also shows great potentials to quickly obtain the numeric value of privacy.
keywords 3D simulation; numerical measurement; traditional Korean palace; privacy
series CAADRIA
email
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_253819 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002