CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 568

_id ecaade2017_288
id ecaade2017_288
authors Emo, Beatrix, Treyer, Lukas, Schmitt, Gerhard and Hoelscher, Christoph
year 2017
title Towards defining perceived urban density
doi https://doi.org/10.52842/conf.ecaade.2017.2.637
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 637-646
summary The aim of the paper is to identify parameters that influence perceived urban density. Whilst it is standard for architects and planners to consider urban density, there is often no consideration of how individuals might perceive such density. We report the findings of a study in which participants rate photographs of urban scenes according to perceived urban density. The case study area is central Zurich, Switzerland. The images are analyzed according to six parameters: visibility, amount of buildings, street width, amount of sky, amount of green space, and amount of vehicles. We report the findings of where images were ranked along a scale from lowest to highest perceived urban density. Findings show that visibility alone is not enough to explain the rating of perceived urban density. The study is a first step towards reaching a definition of perceived urban density that can be applied to different urban contexts.
keywords urban density; perception; behavioural study; 3D reconstruction
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_165
id ecaade2018_165
authors Fisher-Gewirtzman, Dafna and Bruchim, Elad
year 2018
title Considering Variant Movement Velocities on the 3D Dynamic Visibility Analysis (DVA) - Simulating the perception of urban users: pedestrians, cyclists and car drivers.
doi https://doi.org/10.52842/conf.ecaade.2018.2.569
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 569-576
summary The objective of this research project is to simulate and evaluate the effect of movement velocity and cognitive abilities on the visual perception of three groups of urban users: pedestrians, cyclists and car drivers.The simulation and analysis is based on the 3D Dynamic Visual Analysis (DVA) (Fisher-Gewirtzman, 2017). This visibility analysis model was developed in the Rhinoceros and Grasshopper software environments and is based on the conceptual model presented in Fisher-Gewirtzman (2016): a 3D Line of Sight (LOS) visibility analysis, taking into account the integrated effect of the 3D geometry of the environment and the variant elements of the view (such as the sky, trees and vegetation, buildings and building types, roads, water etc.). In this paper, the current advancement of the existing model considers the visual perception of human users employing three types of movement in the urban environment--pedestrians, cyclists and drivers--is explored.We expect this research project to exemplify the contribution of such a quantification and evaluation model to evaluating existing urban structures, and for supporting future human perception-based urban design processes.
keywords visibility analysis and simulation; predicting perception of space; movement in the urban environment; pedestrians; cyclists; car drivers
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2017_291
id ecaade2017_291
authors Koltsova Jenne, Anastasia, Tunçer, Bige, Beir?o, José Nuno and Schmitt, Gerhard
year 2017
title Stratification of Public Spaces based on Qualitative Attribute Measurement
doi https://doi.org/10.52842/conf.ecaade.2017.2.581
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 581-590
summary This paper presents a computational setup for public space quality attribute measurement that leverages GIS technologies, remote access and actual databases. The goal of this research study is to objectify public space qualities established by prior research and verify these in a specific context. In particular, this work uses liveliness as a quality criterion for public space and analyses its interrelationship to space descriptive attributes represented by the objective characteristics of the existing public spaces. The main motivation of this research is to provide for better understanding of public space characteristics that support vibrant social life within contemporary urban settings in Europe.
keywords Urban Design; Public Space Quality; Liveliness; Integrative Analysis; Parametric Modelling; GIS
series eCAADe
email
last changed 2022/06/07 07:51

_id sigradi2017_074
id sigradi2017_074
authors Nisenbaum, Marcio; José Ripper Kós
year 2017
title Paisagens Sonoras Digitais: metodologia de representação dos sons urbanos por meio de motor de jogo. [Digital soundscapes: urban sound representation methodology based on game engine.]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.505-512
summary This paper discusses about soundscape notation possibilities and structures a methodology for representing urban sounds based on game engine technology. Recently, new forms of sound visualization and auralization techniques have emerged within the research fields of Soundscape and Noise Pollution studies. The development of digital media, such as game engines, introduced new forms of audiovisual 3d representations, combining geometry and sound in a structured interactive computational space. This paper addresses these novel methods of representation and reflects upon their contribution for soundscape studies through an ongoing study case.
keywords Soundscapes; Simulation; Game engine; Digital medium.
series SIGRADI
email
last changed 2021/03/28 19:59

_id ijac201715304
id ijac201715304
authors Tosello, María Elena and María Georgina Bredanini
year 2017
title A personal space in the Web. Bases, processes and evaluation of a collaborative digital design experience for significant learning
source International Journal of Architectural Computing vol. 15 - no. 3, 230-245
summary We live constantly networked, performing multiple activities in virtual spaces which are intertwined with physical space, shaping an augmented and symbiotic chronotope. Considering that personal space is an area surrounding individuals that provides a framework for developing activities wouldn’t it be necessary to count on a virtual personal space? This article presents the bases, processes, and results of a didactic experience which purpose was to imagine and design a personal space in the Web, representing its properties and characteristics through a transmedia narrative unfolded through diverse languages and media. Three cases are presented, selected because they propose different strategies to approach the problem. In order to perform a comparative analysis of the results, the categories were defined based on the triadic structure of Peirce’s Theory of Signs, which in turn were divided into sub-categories that incorporate the Principles of Design and Evaluation of Interface-Spaces.
keywords Personal space, transmedia storytelling, parametric design, video games, interface-space
series journal
email
last changed 2019/08/07 14:03

_id ecaade2021_203
id ecaade2021_203
authors Arora, Hardik, Bielski, Jessica, Eisenstadt, Viktor, Langenhan, Christoph, Ziegler, Christoph, Althoff, Klaus-Dieter and Dengel, Andreas
year 2021
title Consistency Checker - An automatic constraint-based evaluator for housing spatial configurations
doi https://doi.org/10.52842/conf.ecaade.2021.2.351
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 351-358
summary The gradual rise of artificial intelligence (AI) and its increasing visibility among many research disciplines affected Computer-Aided Architectural Design (CAAD). Architectural deep learning (DL) approaches are being developed and published on a regular basis, such as retrieval (Sharma et al. 2017) or design style manipulation (Newton 2019; Silvestre et al. 2016). However, there seems to be no method to evaluate highly constrained spatial configurations for specific architectural domains (such as housing or office buildings) based on basic architectural principles and everyday practices. This paper introduces an automatic constraint-based consistency checker to evaluate the coherency of semantic spatial configurations of housing construction using a small set of design principles to evaluate our DL approaches. The consistency checker informs about the overall performance of a spatial configuration followed by whether it is open/closed and the constraints it didn't satisfy. This paper deals with the relation of spaces processed as mathematically formalized graphs contrary to existing model checking software like Solibri.
keywords model checking, building information modeling, deep learning, data quality
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2017_101
id ecaade2017_101
authors Ayoub, Mohammed and Wissa, Magdi
year 2017
title Daylight Optimization - A Parametric Study of Urban Façades Design within Hybrid Settlements in Hot-Desert Climate
doi https://doi.org/10.52842/conf.ecaade.2017.2.193
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 193-202
summary Unprecedented growth of hybrid settlements causes deterioration to the indoor environmental quality. Due to their narrow street-networks and fully packed urban fabric, lower floors are subjected to severe overshadow condition, which has adverse effects on the health of the inhabitants. This paper aims to investigate techniques to mitigate the under-lit indoor environment for a group of buildings with variable heights and orientations, with regard to the urban façades parameters. It reflects an intervention in an existing hybrid settlements, within hot-desert climate, to alter façades configurations for daylight optimization, and ultimately recover the lost indoor quality of users in such contexts.
keywords Daylight Optimization; Urban Façade; Simulation; Hybrid Settlements ; Parametric Design
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2017_052
id sigradi2017_052
authors Branco, Bruna; Robson Canuto, Aristóteles Cantalice
year 2017
title Fabricação Digital Aplicada à Habitação de Caráter Emergencial: Um estudo sobre a adaptação de WikiHouses ao contexto ambiental brasileiro [Digital Fabrication Applied to Temporary Houses for Post-disaster and Social Emergency: A study on the adaptation of WikiHouses to the Brazilian tropics]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.358-366
summary Digital fabrication has transformed the way buildings are constructed by applying methods such as friction-fit connection. This technique has been propagated by WikiHouse which aims to develop open building technologies to different environmental contexts. However, the indiscriminate use of the model may result in inefficiency of housing performance. This work, therefore, investigates solutions for adapting WikiHouses to the tropics, according to principles proposed by Armando de Holanda in ‘A Guide to Build in Northeast Brazil’. Nevertheless, difficulties related to certain adaptations were observed such as connections compatibility and design of large open spaces, especially because these systems depend on a maximum size of parts.
keywords Digital fabrication; Temporary houses; Post-traumatic urbanism; Friction-fit Connection, WikHouse.
series SIGRADI
email
last changed 2021/03/28 19:58

_id cf2017_051
id cf2017_051
authors Chen, Kian Wee; Janssen, Patrick; Norford, Leslie
year 2017
title Automatic Parameterisation of Semantic 3D City Models for Urban Design Optimisation
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 51-65.
summary We present an auto-parameterisation tool, implemented in Python, that takes in a semantic model, in CityGML format, and outputs a parametric model. The parametric model is then used for design optimisation of solar availability and urban ventilation potential. We demonstrate the tool by parameterising a CityGML model regarding building height, orientation and position and then integrate the parametric model into an optimisation process. For example, the tool parameterises the orientation of a design by assigning each building an orientation parameter. The parameter takes in a normalised value from an optimisation algorithm, maps the normalised value to a rotation value and rotates the buildings. The solar and ventilation performances of the rotated design is then evaluated. Based on the evaluation results, the optimisation algorithm then searches through the parameter values to achieve the optimal performances. The demonstrations show that the tool eliminates the need to set up a parametric model manually, thus making optimisation more accessible to designers.
keywords City Information Modelling, Conceptual Urban Design, Parametric Modelling, Performance-Based Urban Design
series CAAD Futures
email
last changed 2017/12/01 14:37

_id acadia17_190
id acadia17_190
authors Coleman, James; Cole, Shannon
year 2017
title By Any Means Necessary: Digitally Fabricating Architecture at Scale
doi https://doi.org/10.52842/conf.acadia.2017.190
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 190-201
summary Architectural manufacturing is a balancing act between production facility and a custom fabrication shop. Each project Zahner takes on is different from the last, and not likely to repeat. This means that workflows are designed and deployed for each project individually. We present Flash Manufacturing, a fabrication methodology we employ in the production of architectural elements for cutting-edge and computationally sophisticated buildings. By remixing manufacturing techniques and production spaces we are able to meet the novel challenges posed by fabricating and assembling hundreds of thousands of unique parts. We discuss methods for producing vastly different project types and highlight two building case studies: the Cornell Tech Bloomberg Center and the Petersen Automotive Museum. With this work, we demonstrate how design creativity is no longer at odds with reliable and cost-effective building practices. Zahner has produced hundreds of seminal buildings working with architects such as: Gehry Partners, Zaha Hadid, m0rphosis, Herzog & de Meuron, OMA, Steven Holl Architects, Studio Daniel Libeskind, Rafael Moneo, DS+R, Foster + Partners, Gensler, KPF, SANAA and many more. This paper disrupts conventional discourse surrounding manufacturing/construction methods by discussing the realities of mass customization—how glossy architectural products are forged through ad hoc inventive engineering and risk tolerance.
keywords material and construction; fabrication; CAM; prototyping; construction; robotics
series ACADIA
email
last changed 2022/06/07 07:56

_id ecaade2017_157
id ecaade2017_157
authors Date, Kartikeya, Schaumann, Davide and Kalay, Yehuda E.
year 2017
title A Parametric Approach To Simulating Use-Patterns in Buildings - The Case Of Movement
doi https://doi.org/10.52842/conf.ecaade.2017.2.503
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 503-510
summary We describe one of the three core use-pattern building blocks of a parametric approach to simulating use-patterns in buildings. Use-patterns are modeled as events which use specified descriptions of spaces, actors and activities which constitute them. The simulation system relies on three fundamental patterns of use - move, meet and do. The move pattern is considered in detail in this paper with specific reference to what we term the partial knowledge issue. Modeling decision making about how to move through the space (what path to take) depends on modeling the actor's partial access to knowledge. Visibility is used as an example of partial knowledge. The parametric approach described in the paper enables the clear separation of syntactical and semantic conditions which inform decisions and the coordination of decisions made by agents in a simulation of use-patterns. This approach contributes to extending the analytical capability of Building Information Models from the point of view of evaluating how a proposed building design may be used, given complex, interrelated patterns of use.
keywords Agent-Based Systems, Simulation, Use-Patterns, Design Tools
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia17_212
id acadia17_212
authors De Luca, Francesco
year 2017
title Solar Form Finding: Subtractive Solar Envelope and Integrated Solar Collection Computational Method for High-Rise Buildings in Urban Environments
doi https://doi.org/10.52842/conf.acadia.2017.212
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 212-221
summary Daylight standards contribute significantly to the form of buildings and the urban environment. Direct solar access of existing and new buildings can be considered through the use of solar envelope and solar collection isosurface methods. The first determines the maximum volume and shape that new buildings cannot exceed to guarantee the required solar rights on existing surrounding facades. The latter predicts the portion of facades of new buildings that will receive the required direct sunlight hours in urban environments. Nowadays, environmental design software based on the existing methods permits the generation of solar envelopes and solar collection isosurfaces to use in the schematic design phase. Nevertheless, the existing methods and software present significant limitations when used to design buildings that must fulfil the Estonian daylight standard. Recent research has successfully developed computational workflows based on the existing methods and available tools to tackle such shortcomings. The present work uses the findings to propose a novel computational method to generate solar envelopes and integrate solar collection analysis. It is a subtractive form-finding method that is more efficient than the existing additive methods and other recent workflows when it is applied to high-rise buildings in fragmented urban environments. The tests performed show that the new method permits the realisation of compliant and larger solar envelopes, which furthermore embed formal properties. The objective of the research is to contribute to the development of computational methods and tools to integrate direct solar access performance efficiently into the design process.
keywords design methods; information processing; simulation & optimization; form finding
series ACADIA
email
last changed 2022/06/07 07:55

_id ecaade2017_164
id ecaade2017_164
authors De Luca, Francesco
year 2017
title From Envelope to Layout - Buildings Massing and Layout Generation for Solar Access in Urban Environments
doi https://doi.org/10.52842/conf.ecaade.2017.2.431
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 431-440
summary The use of daylight for the inhabitants health and comfort purposes and for the energy efficiency of buildings influences significantly the shape and outlook of urban environments. The solar envelope and solar collection surface are methods to define the massing of buildings for direct solar access requirements. They have been recently improved to be used in the design of buildings in relation to the Estonian daylight standard. Nevertheless the solar collection method can be applied only to single buildings with simple shape. The present research investigates the direct solar access performance of building clusters with multiple layouts in different urban areas in the city of Tallinn. Result show that different patterns perform in significant different ways whereas the same cluster types have the best and the least performances in all the cases.
keywords Urban design; Direct solar access; Solar envelope; Environmental analysis; Computational design
series eCAADe
email
last changed 2022/06/07 07:55

_id cf2017_225
id cf2017_225
authors De Luca, Francesco; Voll, Hendrik
year 2017
title Solar Collection Multi-isosurface Method: Computational Design Advanced Method for the Prediction of Direct Solar Access in Urban Environments
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 225.
summary Direct solar access and daylight requirements contribute significantly when it comes to shaping the layout and appearance of contemporary cities. Urban planning regulations in Estonia set the minimum amount of direct solar access that existing housing has the right to receive and new premises are required to get when new developments are built. The solar envelope and solar collection methods are used to define the volume and shape of new buildings that allow the due solar rights to the surrounding buildings, in the case of the former, and the portion of the own façades that receive the required direct solar access, in the case of the latter. These methods have been developed over a period of several decades, and present-day CAAD and environmental analysis software permits the generation of solar envelopes and solar collection isosurfaces, although they suffer from limitations. This paper describes an advanced method for generating solar collection isosurfaces and presents evidence that it is significantly more efficient than the existing method for regulation in Estonia’s urban environments.
keywords Urban planning, Direct solar access, Solar envelope, Solar collection, Computational design, Environmental design
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ascaad2021_065
id ascaad2021_065
authors Fraschini, Matteo; Julian Raxworthy
year 2021
title Territories Made by Measure: The Parametric as a Way of Teaching Urban Design Theory
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 494-506
summary Design tools like Grasshopper are often used to either generate novel forms, to automate certain design processes or to incorporate scientific factors. However, any Grasshopper definition has certain assumptions about design and space built into it from its earliest genesis, when the initial algorithm is set out. Correspondingly, implicit theoretical positions are built into definitions, and therefore its results. Approaching parametric design as a question of architectural, landscape architectural or urban design theory allows the breaking down of traditional boundaries between the technical and the historical or theoretical, and the way parametric design, and urban design history & theory, can be conveyed in the teaching environment. Once the boundaries between software and history & theory are transgressed, Grasshopper can be a way of testing the principles embedded in historical designs and thus these two disciplines can be joined. In urban design, there is an inherent clash between an ideal model and existing urban geography or morphology, and also between formal (qualitative) and numerical (quantitative) aspects. If a model provides a necessary vision for future development, an existing topography then results from the continuous human and natural modifications of a territory. To explore this hypothesis, the “Urban Design Representation” subject in the Master of Urban Design program at the University of Cape Town taught in 2017 & 2018 was approached “parametrically” from these two opposite, albeit convergent, starting points: the conceptual/rational versus the physical/empiric representations of a territory. In this framework, Grasshopper was used to represent typical standards and parameters of modern urban planning (for example, Floor/Area Ratio, height and distance between buildings, site coverage, etc), and a typological approach was adopted to study and “decode” the relationship between public and private space, between the street, the block and topography, between solids and voids. This methodology permits a cross-comparison of different urban design models and the immediate evaluation of their formal outputs derived from parametric data.
series ASCAAD
email
last changed 2021/08/09 13:13

_id caadria2017_027
id caadria2017_027
authors Johanson, Madeleine, Khan, Nazmul, Asher, Rob, Butler, Andrew and Haeusler, M. Hank
year 2017
title Urban Pinboard - Establishing a Bi-directional Workflow Between Web-based Platforms and Computational Tools
doi https://doi.org/10.52842/conf.caadria.2017.715
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 715-724
summary Architecture is heading towards a future where data is collected, collated and presented in a dynamic platform. There is a potential for many standard processes in the industry to become automated, such as the site analysis process. Streamlining aspects of the design process allows architects to pay greater attention on creative design solutions for their buildings and less time engaging in complex, time consuming analytical programs. Urban Pinboard, a web-based GIS platform, promises to establish a bi-directional workflow between web data depositories and computational tools through the medium of a website. By doing so, the website allows users with minimal experience in computational processes to be engaged in the utilisation of these large datasets. Through the automation of these processes, relationships within the built environment industry can excel, leading towards performative driven designs.
keywords Urban Planning; Computational Urbanism; Data-driven Design; New Workflow Models; Software Development.
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2017_054
id caadria2017_054
authors Leit?o, António, Castelo Branco, Renata and Cardoso, Carmo
year 2017
title Algorithmic-Based Analysis - Design and Analysis in a Multi Back-end Generative Tool
doi https://doi.org/10.52842/conf.caadria.2017.137
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 137-146
summary Estimating a building's performance is part of the engineering and architecture discipline. Nowadays, this estimation is done using analysis tools. In many cases, these analysis tools require specialized building models that are simplifications of the actual models. Unfortunately, the adaptations that need to be done to an existing model are tiresome and make the architect less willing to evaluate variations of the building design. Moreover, in the case of buildings with complex shapes, the analyses tend to be less reliable. These problems also occur when algorithmic approaches are used to generate the building design, as the algorithmic script needs to be adapted to satisfy the requirements of the analysis tool, or the manual adaptation of the generated model needs to be repeated each time the script is executed. To solve these issues we propose Algorithmic-Based Analysis. This is a Generative Design method that, utilizing a single algorithmic-based representation of a building, can generate not only the traditional CAD or BIM model, but also specialized models for use in different kinds of analysis.
keywords Generative Design; Building Performance; Analysis; Performance-based Design; Algorithmic-Based Analysis
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2017_079
id caadria2017_079
authors Miyake, Munetoshi, Fukuda, Tomohiro, Yabuki, Nobuyoshi and Motamedi, Ali
year 2017
title Outdoor MarkerLess Augmented Reality - A System for Visualizing Building Models Using Simultaneous Localization and Mapping
doi https://doi.org/10.52842/conf.caadria.2017.095
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 95-104
summary In this study, an Augmented Reality (AR) system is developed to be used for visualizing design projects of buildings. In such design projects, it is desirable to enable design stakeholders visualizing the outcomes of different design options to reduce the resistance and hesitation towards new design challenges. The research proposes an outdoor mark-er-less AR using Simultaneous Localization and Mapping (SLAM) for the AR tracking. Our proposed system performs reconstruction and localization steps in real-time, as opposed to similar methods in which the reconstruction step is done offline. A case study has been performed for a de-sign scenario of buildings. The case study verified the performance of visualization and tracking.
keywords Architecture and urban environment; Augmented Reality (AR); Simultaneous Localization and Mapping (SLAM); Visualization
series CAADRIA
email
last changed 2022/06/07 07:58

_id cf2017_229
id cf2017_229
authors Osório, Filipa; Paio, Alexandra; Oliveira, Sancho
year 2017
title Kinetic Origami Surfaces: From Simulation to Fabrication
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 229-248.
summary On nowadays social, technological and economic context everything changes constantly so there is the persistent need to adapt at all levels. This research defends that Architecture should do the same through the use of kinetic and interactive buildings, or elements in a building. These elements should allow the building to adapt to changing needs and conditions. This article describes the current state of an ongoing research that proposes the use of kinetic Rigid Origami foldable surfaces to be used as roofs for spaces with big spans and the practical contribution that the Design Studio Surfaces INPLAY has brought to it.
keywords Origami Geometry, Parametric Design, Kinetic Architecture, Digital Fabrication, Design Studio
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ecaade2017_143
id ecaade2017_143
authors Pizzigoni, Attilio, Paris, Vittorio, Micheletti, Andrea and Ruscica, Giuseppe
year 2017
title Advanced tools and algorithms for parametric landscape urbanism
doi https://doi.org/10.52842/conf.ecaade.2017.1.461
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 461-470
summary In the last decades, urban design has been influenced by its relationship with landscape. This has led to a new approach formalised and called Landscape Urbanism. Defining specific reading and analysis instruments together with proper design methods, capable of a transdisciplinary dialogue with geography, plant and biological world's languages, landscape urbanism can undoubtedly obtain more performing purposes than the ones achieved by traditional urban planning. Moreover, new digital tools are appearing, providing urbanism with new instruments for an advanced and interactive way to design cities in close relationship with landscape. The process starts with the acquisition of large quantity of data, like georeferenced maps in conjunction with relevant information about the territory, such as traffic and atmospheric pollution data, important buildings and monuments or significant landscape elements (rivers, mountains, etc.). All this information is combined onto multiple layers in order to be used by different design algorithms, connected by multi-dimensional arrays, whose reciprocal relations are dynamically controlled by architects and engineers. We will present here the case study of an ecological and regenerative infrastructure for the city of Bergamo designed on the basis of these principles, using a convenient combination of parametric tools.
keywords algorithmic city planning; landscape urbanism; post-urban architecture
series eCAADe
email
last changed 2022/06/07 08:00

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_962974 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002