CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 484

_id acadia17_426
id acadia17_426
authors Moorman, Andrew
year 2017
title Pattern Making and Learning: Non-Routine Practices in Generative Design
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 426- 435
doi https://doi.org/10.52842/conf.acadia.2017.426
summary We now witness an upsurge in mainstream generative design tools fortified by simulation that speed up the concealed linear synthesis of optimized design alternatives. In pursuit of optimality, these tools saturate local machines or cloud servers with analysis and design iteration data, only to discard it once the procedure has concluded. Largely absent, however, are tools for an active, adaptive relationship with design exploration and the reuse of corresponding design data and metadata. In Pattern Making and Pattern Learning, we propose that these characteristics are mutually beneficial. This paper presents a series of revisions to the optimization framework for routine design synthesis that examine a potential symbiosis between the production of large datasets (big data) and non-routine practices of making in design. Our engagement with iterative design exercises is twofold: as a supply of computer-generated design information to foster user intuition and explore the design space on non-objective terms, and as a supply of human-generated design information to learn artifacts of user preference in the interest of design software personalization. These concepts are applied to the generation of functionally graded patterning in chair design, combining methods of physical production with programmable sheet material behavior through a custom interactive synthesis framework.
keywords design methods; information processing; ai & machine learning; simulation & optimization; generative system
series ACADIA
email
last changed 2022/06/07 07:58

_id sigradi2017_069
id sigradi2017_069
authors Briones Lazo, Carolina; Carolina Soto Ogueta
year 2017
title La enseñanza de BIM en Chile, el desafío de un cambio de enfoque centrado en la metodología por sobre la tecnología. [BIM education in Chile, the challenge of a shift of focus centered on methodology over technology.]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.470-478
summary This article presents the level of adoption of BIM in Chile referring to recent studies carried out in the country, demonstrating that there has not been a significant increase in the use of this methodology by the industry. According to the analysis of international cases on educational frameworks, the authors argue that the development of a national education strategy for BIM with a focus on defining BIM capabilities required to assume the national mandate 2020, along with promoting collaborative work environments and active learning methodologies would be very beneficial.
keywords Building Information Modelling; Metodología BIM; Adopción de BIM; Estrategia de enseñanza de BIM.
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia17_248
id acadia17_248
authors Felbrich, Benjamin; Fru?h, Nikolas; Prado, Marshall; Saffarian, Saman; Solly, James; Vasey, Lauren; Knippers, Jan; Menges, Achim
year 2017
title Multi-Machine Fabrication: An Integrative Design Process Utilising an Autonomous UAV and Industrial Robots for the Fabrication of Long-Span Composite Structures
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 248-259
doi https://doi.org/10.52842/conf.acadia.2017.248
summary Fiber composite materials have tremendous potential in architectural applications due to their high strength-to-weight ratio and their ability to be formed into complex shapes. Novel fabrication processes can be based on the unique affordances and characteristics of fiber composites. Because these materials are lightweight and have high tensile strength, a radically different approach to fabrication becomes possible, which combines low-payload yet long-range machines—such as unmanned aerial vehicles (UAV)—with strong, precise, yet limited-reach industrial robots. This collaborative concept enables a scalable fabrication setup for long-span fiber composite construction. This paper describes the integrated design process and design development of a large-scale cantilevering demonstrator, in which the fabrication setup, robotic constraints, material behavior, and structural performance were integrated in an iterative design process.
keywords material and construction; fabrication; construction; robotics
series ACADIA
email
last changed 2022/06/07 07:50

_id sigradi2017_026
id sigradi2017_026
authors Martini, Sebastián; Mauro Chiarella
year 2017
title Didactica Maker. Estrategias colaborativas de aprendizaje STEM en Diseño Industrial. [Makers Didactics. STEM Learning collaborative strategies in Industrial Design.]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.186-192
summary In this presentation will be exposed a work of verification of the research carried out for the Master's degree in University Teaching about the implications of Maker Culture in the teaching-learning processes into Industrial Design. From this exploration, we are interested in proposing an exercise for the subject IMD-DI, that develop an action process where it is possible catalyze the educational advantages of Maker Culture, STEAM education and the disciplinary transversality within a strategy on problem-based learning as a way of approach and knowledge generation.
keywords Maker culture; Makerspace; STEM; PBL; Collaborative working
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia17_512
id acadia17_512
authors Rossi, Andrea; Tessmann, Oliver
year 2017
title Collaborative Assembly of Digital Materials
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 512- 521
doi https://doi.org/10.52842/conf.acadia.2017.512
summary Current developments in design-to-production workflows aim to allow architects to quickly prototype designs that result from advanced design processes while also embedding the constraints imposed by selected fabrication equipment. However, the enduring physical separation between design space and fabrication space, together with a continuous approach to both design, via NURBs modeling software, and fabrication, through irreversible material processing methods, limit the possibilities to extend the advantages of a “digital” approach (Ward 2010), such as full editability and reversibility, to physical realizations. In response to such issues, this paper proposes a processto allow the concurrent design and fabrication of discrete structures in a collaborative process between human designer and a 6-axis robotic arm. This requires the development of design and materialization procedures for discrete aggregations, including the modeling of assembly constraints, as well as the establishment of a communication platform between human and machine actors. This intends to offer methods to increase the accessibility of discrete design methodologies, as well as to hint at possibilities for overcoming the division between design and manufacturing (Carpo 2011; Bard et al. 2014), thus allowing intuitive design decisions to be integrated directly within assembly processes (Johns 2014).
keywords material and construction; construction/robotics; smart assembly/construction; generative system
series ACADIA
email
last changed 2022/06/07 07:56

_id ijac201715304
id ijac201715304
authors Tosello, María Elena and María Georgina Bredanini
year 2017
title A personal space in the Web. Bases, processes and evaluation of a collaborative digital design experience for significant learning
source International Journal of Architectural Computing vol. 15 - no. 3, 230-245
summary We live constantly networked, performing multiple activities in virtual spaces which are intertwined with physical space, shaping an augmented and symbiotic chronotope. Considering that personal space is an area surrounding individuals that provides a framework for developing activities wouldn’t it be necessary to count on a virtual personal space? This article presents the bases, processes, and results of a didactic experience which purpose was to imagine and design a personal space in the Web, representing its properties and characteristics through a transmedia narrative unfolded through diverse languages and media. Three cases are presented, selected because they propose different strategies to approach the problem. In order to perform a comparative analysis of the results, the categories were defined based on the triadic structure of Peirce’s Theory of Signs, which in turn were divided into sub-categories that incorporate the Principles of Design and Evaluation of Interface-Spaces.
keywords Personal space, transmedia storytelling, parametric design, video games, interface-space
series journal
email
last changed 2019/08/07 14:03

_id acadia17_92
id acadia17_92
authors Anzalone, Phillip; Bayard, Stephanie; Steenblik, Ralph S.
year 2017
title Rapidly Deployed and Assembled Tensegrity System: An Augmented Design Approach
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 92-101
doi https://doi.org/10.52842/conf.acadia.2017.092
summary The Rapidly Deployable and Assembled Tensegrity (RDAT) project enables the efficient automated design and deployment of differential-geometry tensegrity structures through computation-driven design-to-installation workflow. RDAT employs the integration of parametric and solid-modeling methods with production by streamlining computer numerically controlled manufacturing through novel detailing and production techniques to develop an efficient manufacturing and assembly system. The RDAT project emerges from the Authors' research in academia and professional practice focusing on computationally produced full-scale performative building systems and their innovative uses in the building and construction industry.
keywords design methods; information processing; AI; machine learning; form finding; VR; AR; mixed reality
series ACADIA
email
last changed 2022/06/07 07:54

_id acadia17_164
id acadia17_164
authors Brugnaro, Giulio; Hanna, Sean
year 2017
title Adaptive Robotic Training Methods for Subtractive Manufacturing
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 164-169
doi https://doi.org/10.52842/conf.acadia.2017.164
summary This paper presents the initial developments of a method to train an adaptive robotic system for subtractive manufacturing with timber, based on sensor feedback, machine-learning procedures and material explorations. The methods were evaluated in a series of tests where the trained networks were successfully used to predict fabrication parameters for simple cutting operations with chisels and gouges. The results suggest potential benefits for non-standard fabrication methods and a more effective use of material affordances.
keywords design methods; information processing; construction; robotics; ai & machine learning; digital craft; manual craft
series ACADIA
email
last changed 2022/06/07 07:52

_id caadria2017_070
id caadria2017_070
authors Chen, Nai Chun, Xie, Jenny, Tinn, Phil, Alonso, Luis, Nagakura, Takehiko and Larson, Kent
year 2017
title Data Mining Tourism Patterns - Call Detail Records as Complementary Tools for Urban Decision Making
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 685-694
doi https://doi.org/10.52842/conf.caadria.2017.685
summary In this study we show how Call Detail Record (CDR) can be used to better understand the travel patterns of visitors. We show how Origin-Destination (OD) Interactive Maps can provide transportation information through CDR. We then use aggregation of CDR to show the differences between the travel patterns of visitors from different countries and of different lengths of stay. We also show that visitors move differently during event periods and non-event periods, reflecting the importance of real-time data available by CDR. From CDR, we can gain more detailed and complete information about how tourists move compared to traditional surveys, which can be used to aid smarter transportation systems and urban resource planning.
keywords Machine Learning; Call Detail Record; Original-Destination Matrix; Urban Design Tool
series CAADRIA
email
last changed 2022/06/07 07:55

_id acadia17_238
id acadia17_238
authors El-Zanfaly, Dina
year 2017
title A Multisensory Computational Model for Human-Machine Making and Learning
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 238-247
doi https://doi.org/10.52842/conf.acadia.2017.238
summary Despite the advancement of digital design and fabrication technologies, design practices still follow Alberti’s hylomorphic model of separating the design phase from the construction phase. This separation hinders creativity and flexibility in reacting to surprises that may arise during the construction phase. These surprises often come as a result of a mismatch between the sophistication allowed by the digital technologies and the designer’s experience using them. These technologies and expertise depend on one human sense, vision, ignoring other senses that could be shaped and used in design and learning. Moreover, pedagogical approaches in the design studio have not yet fully integrated digital technologies as design companions; rather, they have been used primarily as tools for representation and materialization. This research introduces a multisensory computational model for human-machine making and learning. The model is based on a recursive process of embodied, situated, multisensory interaction between the learner, the machines and the thing-in-the-making. This approach depends heavily on computational making, abstracting, and describing the making process. To demonstrate its effectiveness, I present a case study from a course I taught at MIT in which students built full-scale, lightweight structures with embedded electronics. This model creates a loop between design and construction that develops students’ sensory experience and spatial reasoning skills while at the same time enabling them to use digital technologies as design companions. The paper shows that making can be used to teach design while enabling the students to make judgments on their own and to improvise.
keywords education, society & culture; fabrication
series ACADIA
email
last changed 2022/06/07 07:55

_id acadia17_284
id acadia17_284
authors Hu, Zhengrong; Park, Ju Hong
year 2017
title HalO [Indoor Positioning Mobile Platform]: A Data-Driven, Indoor-Positioning System With Bluetooth Low Energy Technology To Datafy Indoor Circulation And Classify Social Gathering Patterns For Assisting Post Occupancy Evaluation
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 284-291
doi https://doi.org/10.52842/conf.acadia.2017.284
summary Post-Occupancy Evaluation (POE) as an integrated field between architecture and sociology has created practical guidelines for evaluating indoor human behavior within a built environment. This research builds on recent attempts to integrate datafication and machine learning into POE practices that may one day assist Building Information Modeling (BIM) and multi-agent modeling. This research is based on two premises: 1) that the proliferation of Bluetooth Low Energy (BLE) technology allows us to collect a building user’s data cost-effectively and 2) that the growing application of machine learning algorithms allows us to process, analyze and synthesize data efficiently. This study illustrates that the mobile platform HalO can serve as a generic tool for datafication and automation of data analysis of the movement of a building user. In this research, the iOS mobile application HalO, combined with BLE beacons enable building providers (architects, developers, engineers and facility managers etc.) to collect the user’s indoor location data. Triangulation was used to pinpoint the user’s indoor positions, and k-means clustering was applied to classify users into different gathering groups. Through four research procedures—Design Intention Analysis, Data Collection, Data Storage and Data Analysis—the visualized and classified data helps building providers to better evaluate building performance, optimize building operations and improve the accuracy of simulations.
keywords design methods; information processing; data mining; IoT; AI; machine learning
series ACADIA
email
last changed 2022/06/07 07:49

_id caadria2024_87
id caadria2024_87
authors Li, Jiongye and Stouffs, Rudi
year 2024
title Distribution of Carbon Storage and Potential Strategies to Enhance Carbon Sequestration Capacity in Singapore: A Study Based on Machine Learning Simulation and Geospatial Analysis
source Nicole Gardner, Christiane M. Herr, Likai Wang, Hirano Toshiki, Sumbul Ahmad Khan (eds.), ACCELERATED DESIGN - Proceedings of the 29th CAADRIA Conference, Singapore, 20-26 April 2024, Volume 2, pp. 89–98
doi https://doi.org/10.52842/conf.caadria.2024.2.089
summary The expansion of urbanization leads to significant changes in land use, consequently affecting carbon storage. This research aims to investigate the carbon loss due to land use alterations and proposes strategies for mitigation. Utilizing existing land use data from 2017 and 2022, along with simulated data for 2025 generated by an ANN model and Cellular Automata, we identified changes in land use. These changes were then correlated with variations in carbon storage, both gains and losses. Our findings reveal a significant loss of 36,859 metric tons of carbon storage from 2017 to 2022. The projection for 2025 estimates a further reduction, reaching a total loss of 83,409 metric tons. By employing the LISA method, we identified that low-carbon storage zones are concentrated in the southeast region of the research site. By overlaying these zones with areas of carbon storage loss, we pinpointed regions severely affected by carbon depletion. Consequently, we propose that mitigation strategies should be imperatively implemented in these identified areas to counteract the trend of carbon storage loss. This approach offers urban planners a solution to identify areas experiencing carbon storage decline. Moreover, our research methodology provides a novel framework for scholars studying similar carbon issues.
keywords land use and land cover (LULC) changes, simulated LULC, machine learning model, carbon storage changes, GIS
series CAADRIA
email
last changed 2024/11/17 22:05

_id acadia17_366
id acadia17_366
authors Lin, Yuming; Huang, Weixin
year 2017
title Behavior Analysis and Individual Labeling Using Data from Wi-Fi IPS
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 366- 373
doi https://doi.org/10.52842/conf.acadia.2017.366
summary It is fairly important for architects and urban designers to understand how different people interact with the environment. However, traditional investigation methods for studying environmental behavior are quite limited in their coverage of samples and regions, which are not sufficient to delve into the behavioral differences of people. Only recently, the development of indoor positioning systems (IPS) and data-mining techniques has made it possible to collect full-time, full-coverage data for behavioral difference research and individualized identification. In our research, the Wi-Fi IPS system is chosen among the various IPS systems as the data source due to its extensive applicability and acceptable cost. In this paper, we analyzed a 60-day anonymized dataset from a ski resort, collected by a Wi-Fi IPS system with 110 Wi-Fi access points. Combining this with mobile phone data and questionnaires, we revealed some interesting characteristics of tourists from different origins through spatial-temporal behavioral data, and further conducted individual labeling through supervised learning. Through this case study, temporal-spatial behavioral data from an IPS system exhibited great potential in revealing individual characteristics besides exploring group differences, shedding light on the prospect of architectural space personalization.
keywords design methods; information processing; data mining; big data
series ACADIA
email
last changed 2022/06/07 07:59

_id ijac201715105
id ijac201715105
authors Nahmad Vazque, Alicia and Wassim Jabi
year 2017
title Investigations in robotic-assisted design: Strategies for symbiotic agencies in material-directed generative design processes
source International Journal of Architectural Computing vol. 15 - no. 1, 70-86
summary The research described in this article utilises a phase-changing material, three-dimensional scanning technologies and a six-axis industrial robotic arms as vehicles to enable a novel framework where robotic technology is utilised as an ‘amplifier’ of the design process to realise geometries that derive from both constructive visions and architectural visions through iterative feedback loops between them. The robot in this scenario is not a fabrication tool but the enabler of an environment where the material, robotic and human agencies interact. This article describes the exploratory research for the development of a dialogic design process, sets the framework for its implementation, carries out an evaluation based on designer use and concludes with a set of observations. One of the main findings of this article is that a deeper collaboration that acknowledges the potential of these tools, in a learning-by-design method, can lead to new choreographies for architectural design and fabrication.
keywords Robotic fabrication, human-machine networks, digital design, agency
series other
type normal paper
email
last changed 2019/08/02 08:28

_id ecaade2017_271
id ecaade2017_271
authors Narahara, Taro
year 2017
title Collective Construction Modeling and Machine Learning: Potential for Architectural Design
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 341-348
doi https://doi.org/10.52842/conf.ecaade.2017.2.341
summary Recently, there are significant developments in artificial intelligence using advanced machine learning algorithms such as deep neural networks. These new methods can defeat human expert players in strategy-based board games such as Go and video games such as Breakout. This paper suggests a way to incorporate such advanced computing methods into architectural design through introducing a simple conceptual design project inspired by computational interpretations of wasps' collective constructions. At this stage, the paper's intent is not to introduce a practical and fully finished tool directly useful for architectural design. Instead, the paper proposes an example of a program that can potentially become a conceptual framework for incorporating such advanced methods into architectural design.
keywords Design tools; Stigmergy; Machine learning
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia23_v1_242
id acadia23_v1_242
authors Noel, Vernelle A.
year 2023
title Carnival + AI: Heritage, Immersive virtual spaces, and Machine Learning
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 242-245.
summary Built on a Situated Computations framework, this project explores preservation, reconfiguration, and presentation of heritage through immersive virtual experiences, and machine learning for new understandings and possibilities (Noel 2020; 2017; Leach and Campo 2022; Leach 2021). Using the Trinidad and Tobago Carnival - hereinafter referred to as Carnival - as a case study, Carnival + AI is a series of immersive experiences in design, culture, and artificial intelligence (AI). These virtual spaces create new digital modes of engaging with cultural heritage and reimagined designs of traditional sculptures in the Carnival (Noel 2021). The project includes three virtual events that draw on real events in the Carnival: (1) the Virtual Gallery, which builds on dancing sculptures in the Carnival and showcases AI-generated designs; (2) Virtual J’ouvert built on J’ouvert in Carnival with AI-generated J’ouvert characters specific; and (3) Virtual Mas which builds on the masquerade.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id acadia17_474
id acadia17_474
authors Peng, Wenzhe; Zhang, Fan; Nagakura, Takehiko
year 2017
title Machines’ Perception of Space: Employing 3D Isovist Methods and a Convolutional Neural Network in Architectural Space Classification
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 474- 481
doi https://doi.org/10.52842/conf.acadia.2017.474
summary Simple and common architectural elements can be combined to create complex spaces. Different spatial compositions of elements define different spatial boundaries, and each produces a unique local spatial experience to observers inside the space. Therefore an architectural style brings about a distinct spatial experience. While multiple representation methods are practiced in the field of architecture, there lacks a compelling way to capture and identify spatial experiences. Describing an observer’s spatial experiences quantitatively and efficiently is a challenge. In this paper, we propose a method that employs 3D isovist methods and a convolutional neural network (CNN) to achieve recognition of local spatial compositions. The case studies conducted validate that this methodology works well in capturing and identifying local spatial conditions, illustrates the pattern and frequency of their appearance in designs, and indicates peculiar spatial experiences embedded in an architectural style. The case study used small designs by Mies van der Rohe and Aldo van Eyck. The contribution of this paper is threefold. First, it introduces a sampling method based on 3D Isovist that generates a 2D image that can be used to represent a 3D space from a specific observation point. Second, it employs a CNN model to extract features from the sampled images, then classifies their corresponding space. Third, it demonstrates a few case studies where this space classification method is applied to different architectural styles.
keywords design methods; information processing; AI; machine learning; computer vision; representation
series ACADIA
email
last changed 2022/06/07 08:00

_id ecaade2017_220
id ecaade2017_220
authors Quartara, Andrea and Figliola, Angelo
year 2017
title Tangible Computing - Manufacturing of Intertwined Logics
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 115-122
doi https://doi.org/10.52842/conf.ecaade.2017.2.115
summary This paper explores the process of digital materialization through robotic fabrication techniques by presenting three wooden projects. The analysis of the case studies is oriented to underline the impact that computation had on architectural construction due to its methodological and instrumental innovations over the last decades. The absorption of computing and digital fabrication logics within the discipline is explored from either an architectural point of view and from the improvements related to automation of the constructive process. On the one hand the case studies are caught because of the desire to expand material complexity and, on the other hand because of the integration with other technological systems. The narrative allows gathering pros and cons in three different investigative macro areas: material culture, methodological oversights, and operative setbacks coming from digital machine and communicational constraints. This analytical investigation helps the definition of a new pathway for future researches, looking forward the assimilation of digital materiality learning in building construction.
keywords computational design; file-to-factory; large-scale robotic woodworking; new production methods
series eCAADe
email
last changed 2022/06/07 08:00

_id ecaade2017_269
id ecaade2017_269
authors Rahmani Asl, Mohammad, Das, Subhajit, Tsai, Barry, Molloy, Ian and Hauck, Anthony
year 2017
title Energy Model Machine (EMM) - Instant Building Energy Prediction using Machine Learning
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 277-286
doi https://doi.org/10.52842/conf.ecaade.2017.2.277
summary In the process of building design, energy performance is often simulated using physical principles of thermodynamics and energy behaviour using elaborate simulation tools. However, energy simulation is computationally expensive and time consuming process. These drawbacks limit opportunities for design space exploration and prevent interactive design which results in environmentally inefficient buildings. In this paper we propose Energy Model Machine (EMM) as a general and flexible approximation model for instant energy performance prediction using machine learning (ML) algorithms to facilitate design space exploration in building design process. EMM can easily be added to design tools and provide instant feedback for real-time design iterations. To demonstrate its applicability, EMM is used to estimate energy performance of a medium size office building during the design space exploration in widely used parametrically design tool as a case study. The results of this study support the feasibility of using machine learning approaches to estimate energy performance for design exploration and optimization workflows to achieve high performance buildings.
keywords Machine Learning; Artificial Neural Networks; Boosted Decision Tree; Building Energy Performance; Parametric Modeling and Design; Building Performance Optimization
series eCAADe
email
last changed 2022/06/07 08:00

_id acadia17_552
id acadia17_552
authors Sjoberg, Christian; Beorkrem, Christopher; Ellinger, Jefferson
year 2017
title Emergent Syntax: Machine Learning for the Curation of Design Solution Space
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 552- 561
doi https://doi.org/10.52842/conf.acadia.2017.552
summary The expanding role of computational models in the process of design is producing exponential growth in parameter spaces. As designers, we must create and implement new methods for searching these parameter spaces, considering not only quantitative optimization metrics but also qualitative features. This paper proposes a methodology that leverages the pattern modeling properties of artificial neural networks to capture designers' inexplicit selection criteria and create user-selection-based fitness functions for a genetic solver. Through emulation of learned selection patterns, fitness functions based on trained networks provide a method for qualitative evaluation of designs in the context of a given population. The application of genetic solvers for the generation of new populations based on the trained network selections creates emergent high-density clusters in the parameter space, allowing for the identification of solutions that satisfy the designer’s inexplicit criteria. The results of an initial user study show that even with small numbers of training objects, a search tool with this configuration can begin to emulate the design criteria of the user who trained it.
keywords design methods; information processing; AI; machine learning; generative system
series ACADIA
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_349951 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002