CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 576

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
doi https://doi.org/10.52842/conf.acadia.2021.530
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id caadria2019_657
id caadria2019_657
authors Chen, Zhewen, Zhang, Liming and Yuan, Philip F.
year 2019
title Innovative Design Approach to Optimized Performance on Large-Scale Robotic 3D-Printed Spatial Structure
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 451-460
doi https://doi.org/10.52842/conf.caadria.2019.2.451
summary This paper presents an innovative approach on designing large-scale spatial structure with automated robotic 3D-printing. The incipient design approach mainly focused on optimizing structural efficiency at an early design stage by transform the object into a discrete system, and the elements in this system contains unique structural parameters that corresponding to its topology results of stiffness distribution. Back in 2017, the design team already implemented this concept into an experimental project of Cloud Pavilion in Shanghai, China, and the 3D-printed spatial structure was partitioned into five zones represent different level of structure stiffness and filled with five kinds of unit toolpath accordingly. Through further research, an upgrade version, the project of Cloud Pavilion 2.0 is underway and will be completed in January 2019. A detailed description on innovative printing toolpath design in this project is conducted in this paper and explains how the toolpath shape effects its overall structural stiffness. This paper contributes knowledge on integrated design in the field of robotic 3D-printing and provides an alternative approach on robotic toolpath design combines with the optimized topological results.
keywords 3D-Printing; Robotic Fabrication; Structural Optimization; Discrete System; Toolpath Design
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2017_069
id caadria2017_069
authors Dritsas, Stylianos, Chen, Lujie and Sass, Lawrence
year 2017
title Small 3D Printers / Large Scale Artifacts - Computation for Automated Spatial Lattice Design-to-Fabrication with Low Cost Linear Elements and 3D Printed Nodes
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 821-830
doi https://doi.org/10.52842/conf.caadria.2017.821
summary The presented process enables users to design, fabricate and assemble spatial lattices comprised of linear stock materials such as round section timber, aluminum or acrylic dowels and complex 3D printed joints. The motivation for the development of this application is informed by the incredible availability of low cost 3D printers which enable anyone to produce small scale artifacts; deploying rapid prototyping to achieve larger scale artifacts than the machine's effective work envelope is a challenge for additive manufacturing; and the trend in the design computing world away highly technical specialized software towards general public applications.
keywords Design Computation; Digital Fabrication; 3D Printing; Spatial Lattices; Design to Production
series CAADRIA
email
last changed 2022/06/07 07:55

_id acadia17_248
id acadia17_248
authors Felbrich, Benjamin; Fru?h, Nikolas; Prado, Marshall; Saffarian, Saman; Solly, James; Vasey, Lauren; Knippers, Jan; Menges, Achim
year 2017
title Multi-Machine Fabrication: An Integrative Design Process Utilising an Autonomous UAV and Industrial Robots for the Fabrication of Long-Span Composite Structures
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 248-259
doi https://doi.org/10.52842/conf.acadia.2017.248
summary Fiber composite materials have tremendous potential in architectural applications due to their high strength-to-weight ratio and their ability to be formed into complex shapes. Novel fabrication processes can be based on the unique affordances and characteristics of fiber composites. Because these materials are lightweight and have high tensile strength, a radically different approach to fabrication becomes possible, which combines low-payload yet long-range machines—such as unmanned aerial vehicles (UAV)—with strong, precise, yet limited-reach industrial robots. This collaborative concept enables a scalable fabrication setup for long-span fiber composite construction. This paper describes the integrated design process and design development of a large-scale cantilevering demonstrator, in which the fabrication setup, robotic constraints, material behavior, and structural performance were integrated in an iterative design process.
keywords material and construction; fabrication; construction; robotics
series ACADIA
email
last changed 2022/06/07 07:50

_id ecaade2017_210
id ecaade2017_210
authors Jimenez Garcia, Manuel, Soler, Vicente and Retsin, Gilles
year 2017
title Robotic Spatial Printing
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 143-150
doi https://doi.org/10.52842/conf.ecaade.2017.2.143
summary There has been significant research into large-scale 3D printing processes with industrial robots. These were initially used to extrude in a layered manner. In recent years, research has aimed to make use of six degrees of freedom instead of three. These so called "spatial extrusion" methods are based on a toolhead, mounted on a robot arm, that extrudes a material along a non horizontal spatial vector. This method is more time efficient but up to now has suffered from a number of limiting geometrical and structural constraints. This limited the formal possibilities to highly repetitive truss-like patterns. This paper presents a generalised approach to spatial extrusion based on the notion of discreteness. It explores how discrete computational design methods offer increased control over the organisation of toolpaths, without compromising design intent while maintaining structural integrity. The research argues that, compared to continuous methods, discrete methods are easier to prototype, compute and manufacture. A discrete approach to spatial printing uses a single toolpath fragment as basic unit for computation. This paper will describe a method based on a voxel space. The voxel contains geometrical information, toolpath fragments, that is subsequently assembled into a continuous, kilometers long path. The path can be designed in response to different criteria, such as structural performance, material behaviour or aesthetics. This approach is similar to the design of meta-materials - synthetic composite materials with a programmed performance that is not found in natural materials. Formal differentiation and structural performance is achieved, not through continuous variation, but through the recombination of discrete toolpath fragments. Combining voxel-based modelling with notions of meta-materials and discrete design opens this domain to large-scale 3D printing. Please write your abstract here by clicking this paragraph.
keywords discrete; architecture; robotic fabrication; large scale printing; software; plastic extrusion
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2017_056
id ecaade2017_056
authors Kontovourkis, Odysseas
year 2017
title Multi-objective design optimization and robotic fabrication towards sustainable construction - The example of a timber structure in actual scale
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 337-346
doi https://doi.org/10.52842/conf.ecaade.2017.1.337
summary This paper attempts to reconsider the role of advanced tools and their effective implementation in the field of Architecture, Engineering and Construction (AEC) through the concept of sustainable construction. In parallel, the paper aims to discuss and find common ground for communication between industrial and experimental processes guided by sustainable criteria, an area of investigation that is currently in the forefront of the research work conducted in our robotic construction laboratory. Within this frame, an ongoing work into the design, analysis and automated construction of a timber structure in actual scale is exemplified and used as a pilot study for further discussion. Specifically, the structure consists of superimposed layers of timber elements that are robotically cut and assembled together, formulating the overall structural system. In order to achieve a robust, reliable and economically feasible solution and to control the automated construction process, a multi-objective design optimization process using evolutionary principles is applied. Our purpose is to investigate possibilities for sustainable construction considering minimization of cost and material waste, and in parallel, discussing issues related to the environmental impact and the feasibility of solutions to be realized in actual scale.
keywords Multi-objective optimization; robotic fabrication; cost and material waste minimization; sustainable construction; timber structure
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia17_382
id acadia17_382
authors Melenbrink, Nathan; Kassabian, Paul; Menges, Achim; Werfel, Justin
year 2017
title Towards Force-aware Robot Collectives for On-site Construction
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 382- 391
doi https://doi.org/10.52842/conf.acadia.2017.382
summary Due to the irregular and variable environments in which most construction projects take place, the topic of on-site automation has previously been largely neglected in favor of off-site prefabrication. While prefabrication has certain obvious economic and schedule benefits, a number of potential applications would benefit from a fully autonomous robotic construction system capable of building without human supervision or intervention; for example, building in remote environments, or building structures whose form changes over time. Previous work using a swarm approach to robotic assembly generally neglected to consider forces acting on the structure, which is necessary to guarantee against failure during construction. In this paper we report on key findings for how distributed climbing robots can use local force measurements to assess aspects of global structural state. We then chart out a broader trajectory for the affordances of distributed on-site construction in the built environment and position our contributions within this research agenda. The principles explored in simulation are demonstrated in hardware, including solutions for force-sensing as well as a climbing robot.
keywords material and construction; physics; construction/robotics; simulation & optimization
series ACADIA
email
last changed 2022/06/07 07:58

_id acadia17_392
id acadia17_392
authors Mesa, Olga; Stavric, Milena; Mhatre, Saurabh; Grinham, Jonathan; Norman, Sarah; Sayegh, Allen; Bechthold, Martin
year 2017
title Non-Linear Matters: Auxetic Surfaces
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 392- 403
doi https://doi.org/10.52842/conf.acadia.2017.392
summary Auxetic structures exhibiting non-linear buckling are a prevalent research topic in the material sciences due to the ability to tune their reversible actuation, porosity, and negative Poisson’s ratio. However, the research is limited to feature sizes at scales below 10 mm2, and to date, there are no available efficient design and prototyping methods for architectural designers. Our study develops design principles and workflow methods to transform standard materials into auxetic surfaces at an architectural scale. The auxetic behavior is accomplished through buckling and hinging by subtracting from a homogeneous material to create perforated patterns. The form of the perforations, including shape, scale, and spacing, determines the behavior of multiple compliant "hinges" generating novel patterns that include scaling and tweening transformations. An analytical method was introduced to generate hinge designs in four-fold symmetric structures that approximate non-linear buckling. The digital workflow integrates a parametric geometry model with non-linear finite element analysis (FEA) and physical prototypes to rapidly and accurately design and fabricate auxetic materials. A robotic 6-axis waterjet allowed for rapid production while maintaining needed tolerances. Fabrication methods allowed for spatially complex shaping, thus broadening the design scope of transformative auxetic material systems by including graphical and topographical biases. The work culminated in a large-scale fully actuated and digitally controlled installation. It was comprised of auxetic surfaces that displayed different degrees of porosity, contracting and expanding while actuated electromechanically. The results provide a promising application for the rapid design of non-linear auxetic materials at scales complimentary to architectural products.
keywords material and construction; CAM; prototyping; smart materials; auxetic
series ACADIA
email
last changed 2022/06/07 07:58

_id ecaade2017_225
id ecaade2017_225
authors Rossi, Andrea and Tessmann, Oliver
year 2017
title Geometry as Assembly - Integrating design and fabrication with discrete modular units
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 201-210
doi https://doi.org/10.52842/conf.ecaade.2017.2.201
summary This paper proposes a design and fabrication approach based on the conceptualization of architectural formations as spatial assemblies of discrete building blocks to be aggregated through custom robotic procedures. Such strategy attempts to create synergies between different technological methods and to define a new and open design space where discrete design, serial prototyping and robotic assembly can be exploited to create complex reconfigurable structures. With the aim to allow users to explore the field of discrete geometries for architectural application without need for prior programming knowledge, we developed a software framework for representing and designing with discrete elements, different digital fabrication techniques integrated with conventional production processes for serial prototyping of repetitive units, and custom robotic fabrication routines, allowing a direct translation from aggregated geometry to assembly toolpath. Together these methods aim at creating a more direct connection between design and fabrication, relying on the idea of discrete elements assembly and on the parallel between modular design and modularized robot code generation.
keywords Digital Materials; Robotic Assembly; Discrete Design; Modular Fabrication; Design Tools
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia23_v1_220
id acadia23_v1_220
authors Ruan, Daniel; Adel, Arash
year 2023
title Robotic Fabrication of Nail Laminated Timber: A Case Study Exhibition
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 220-225.
summary Previous research projects (Adel, Agustynowicz, and Wehrle 2021; Adel Ahmadian 2020; Craney and Adel 2020; Adel et al. 2018; Apolinarska et al. 2016; Helm et al. 2017; Willmann et al. 2015; Oesterle 2009) have explored the use of comprehensive digital design-to-fabrication workflows for the construction of nonstandard timber structures employing robotic assembly technologies. More recently, the Robotically Fabricated Structure (RFS), a bespoke outdoor timber pavilion, demonstrated the potential for highly articulated timber architecture using short timber elements and human-robot collaborative assembly (HRCA) (Adel 2022). In the developed HRCA process, a human operator and a human fabricator work alongside industrial robotic arms in a shared working environment, enabling collaborative fabrication approaches. Building upon this research, we present an exploration adapting HRCA to nail-laminated timber (NLT) fabrication, demonstrated through a case study exhibition (Figures 1 and 2).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id acadia17_92
id acadia17_92
authors Anzalone, Phillip; Bayard, Stephanie; Steenblik, Ralph S.
year 2017
title Rapidly Deployed and Assembled Tensegrity System: An Augmented Design Approach
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 92-101
doi https://doi.org/10.52842/conf.acadia.2017.092
summary The Rapidly Deployable and Assembled Tensegrity (RDAT) project enables the efficient automated design and deployment of differential-geometry tensegrity structures through computation-driven design-to-installation workflow. RDAT employs the integration of parametric and solid-modeling methods with production by streamlining computer numerically controlled manufacturing through novel detailing and production techniques to develop an efficient manufacturing and assembly system. The RDAT project emerges from the Authors' research in academia and professional practice focusing on computationally produced full-scale performative building systems and their innovative uses in the building and construction industry.
keywords design methods; information processing; AI; machine learning; form finding; VR; AR; mixed reality
series ACADIA
email
last changed 2022/06/07 07:54

_id caadria2017_115
id caadria2017_115
authors Araullo, Rebekah and Haeusler, M. Hank
year 2017
title Asymmetrical Double-Notch Connection System in Planar Reciprocal Frame Structures
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 539-548
doi https://doi.org/10.52842/conf.caadria.2017.539
summary Reciprocal Frame Structures (RF) have broad application potentials. Flexible to using small available materials, they span large areas, including varied curvature and doubly-curved forms. Although not many buildings using RF have been constructed to date, records indicate RF efficiencies where timber was widely used in structures predating modern construction. For reasons of adaptability and economy, advances in computation and fabrication precipitated increase in research into RF structures as a contemporary architectural typology. One can observe that linear timber such as rods and bars feature in extensive RF research. However, interest in planar RF has only recently emerged in research. Hence one can argue that planar RF provides depth to explore new design possibilities. This paper contributes to the growing knowledge of planar RF by presenting a design project that demonstrates an approach in notching systems to explore design and structural performance. The design project, the developed design workflow, fabrication, assembly and evaluation are discussed in this paper.
keywords Reciprocal Frame Structures; Space Frames; Computational Design; Digital Fabrication; Deployable Architecture
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia17_492
id acadia17_492
authors Robeller, Christopher; Weinand, Yves
year 2017
title Realization of a Double-Layered Diamond Vault Made from CLT: Constraint-aware design for assembly, for the first integrally attached Timber Folded Plate lightweight structure, covering a column free span of 20 meters with only 45 millimeter thick CLT plates.
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 492- 501
doi https://doi.org/10.52842/conf.acadia.2017.492
summary The use of digital design and fabrication technology for the integration of joints into timber plate structures has been the subject of recent research in the field of architectural geometry. While most of research has been focused on joint geometries, assembly sequences, and the fabrication of smaller prototypes, there have been few implementations in buildings. This paper illustrates the challenges for such a process and offers our solutions for implementing it at a building scale through the example of a theater hall built from cross-laminated timber plates. The building achieves its column-free span of 20 meters with a plate thickness of only 45 mm through a form-active lightweight structure system. It combines prismatic and antiprismatic folded surfaces and a double-layered cross-section with integrated thermal insulation.
keywords material and construction; fabrication
series ACADIA
email
last changed 2022/06/07 07:56

_id acadia17_572
id acadia17_572
authors Sparrman, Bjorn; Matthews, Chris; Kernizan, Schendy; Chadwick, Aran; Thomas, Neil; Laucks, Jared; Tibbits, Skylar
year 2017
title Large-Scale Lightweight Transformable Structures
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 572- 581
doi https://doi.org/10.52842/conf.acadia.2017.572
summary This paper presents strategies for the creation of large-scale transformable structures. In particular we work to leverage material properties and novel construction techniques to induce transformation. We employ flexible biaxial braided geometries to create interconnected large-scale textile surfaces. These braided networks distribute load forces via their internal friction, allowing for uniform structural transformation without the need for complicated mechanical linkages or electromechanical actuation. The ultimate range of these structures has been simulated with computational tools and correlated with physical load testing. We present various applications and configurations of these transforming structures that demonstrate their utility and a new attitude toward the creation of lightweight morphable structures.
keywords material and construction; simulation & optimization; fabrication; form finding
series ACADIA
email
last changed 2022/06/07 07:56

_id ecaade2017_201
id ecaade2017_201
authors De Azambuja Varela, Pedro and Sousa, José Pedro
year 2017
title Fabricating Stereotomy - Variable moulds for cast voussoirs
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 193-200
doi https://doi.org/10.52842/conf.ecaade.2017.2.193.2
summary Recent developments in digital design and fabrication tools have led architects and researchers to renew the interest in stereotomy. This interest converges with a growing ecological and economical conscience that matches classic stereotomy raw material needs: compression resistance materials. However, material resources or prefabrication time are still major counterparts for the adoption of this construction system. This paper focuses in exploring techniques that profit from the interdependency between built form and fabrication technique, foraging methodologies that allow for stereotomic block creation with simpler resources. The premise is to explore faster, cheaper, more accessible ways to build stereotomic structures. The technique developed in this research explores alternatives to the traditional cutting of stone by expanding techniques for variable moulds to form solid voussoirs.
keywords stereotomy; voussoir; mould; variable production; robotic fabrication
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2017_094
id ecaade2017_094
authors Jovanovic, Marko, Vucic, Marko, Mitov, Dejan, Tepavèeviæ, Bojan, Stojakovic, Vesna and Bajsanski, Ivana
year 2017
title Case Specific Robotic Fabrication of Foam Shell Structures
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 135-142
doi https://doi.org/10.52842/conf.ecaade.2017.2.135
summary Most recent developments in the design of free form shells pursue new approaches in digital fabrication based on material properties and construction-aware design. In this research we proposed an alternative approach based on implementation of expanded polystyrene (EPS), a non-standard material for shells, in the process of industrial robot fabrication that enables fast and precise cutting of building elements. Main motivation for using EPS as a building material was driven by numerous advantages when compared to commonly used materials such as: recycleability, cost-efficiency, high earthquake resistance, durability and short assembly time. We describe case specific fabrication approach based on numerous production constraints (size of the panels, limited robot workspace, in situ conditions) that directly design the process.
keywords computational design; shell structures; robotic fabrication; hot-wire cutting; multi-robot control
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2017_220
id ecaade2017_220
authors Quartara, Andrea and Figliola, Angelo
year 2017
title Tangible Computing - Manufacturing of Intertwined Logics
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 115-122
doi https://doi.org/10.52842/conf.ecaade.2017.2.115
summary This paper explores the process of digital materialization through robotic fabrication techniques by presenting three wooden projects. The analysis of the case studies is oriented to underline the impact that computation had on architectural construction due to its methodological and instrumental innovations over the last decades. The absorption of computing and digital fabrication logics within the discipline is explored from either an architectural point of view and from the improvements related to automation of the constructive process. On the one hand the case studies are caught because of the desire to expand material complexity and, on the other hand because of the integration with other technological systems. The narrative allows gathering pros and cons in three different investigative macro areas: material culture, methodological oversights, and operative setbacks coming from digital machine and communicational constraints. This analytical investigation helps the definition of a new pathway for future researches, looking forward the assimilation of digital materiality learning in building construction.
keywords computational design; file-to-factory; large-scale robotic woodworking; new production methods
series eCAADe
email
last changed 2022/06/07 08:00

_id cf2017_150
id cf2017_150
authors Reinhardt, Dagmar; Cabrera, Densil; Hunter, Matthew
year 2017
title A Mathematical Model Linking Form and Material for Sound Scattering: Design, Robotic Fabrication and Evaluation of Sound Scattering Discs: Relating Surface Form to Acoustic Performance
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 150-163.
summary This paper presents empirical research into the acoustic performance of randomized robotically fabricated patterns. Randomness is introduced as degrees of variations in code, both supported by quasi-predictable variations in a computational process, and the select changes through multiple variables in precise robotic fabrication that extend the spectrum for manufacturing diversity in micro-geometries that can change the acoustic response of space. Through physical acoustic testing of scale model 1:10 prototypes in a scale model reverberant box, and consecutive re-modelling of sound discs based on root mean square and depth comparison, a tendency for acoustic behaviours both for scattering and absorption could be demonstrated that relates low spatial frequency magnitude of surface modulation closely to scattering coefficient in a limited case study of six samples. As a result, the study presents a mathematical model that links form and material for sound scattering.
keywords Acoustic Micro-Patterns, Design Robotics, Scattering Coefficient
series CAAD Futures
email
last changed 2017/12/01 14:37

_id acadia17_512
id acadia17_512
authors Rossi, Andrea; Tessmann, Oliver
year 2017
title Collaborative Assembly of Digital Materials
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 512- 521
doi https://doi.org/10.52842/conf.acadia.2017.512
summary Current developments in design-to-production workflows aim to allow architects to quickly prototype designs that result from advanced design processes while also embedding the constraints imposed by selected fabrication equipment. However, the enduring physical separation between design space and fabrication space, together with a continuous approach to both design, via NURBs modeling software, and fabrication, through irreversible material processing methods, limit the possibilities to extend the advantages of a “digital” approach (Ward 2010), such as full editability and reversibility, to physical realizations. In response to such issues, this paper proposes a processto allow the concurrent design and fabrication of discrete structures in a collaborative process between human designer and a 6-axis robotic arm. This requires the development of design and materialization procedures for discrete aggregations, including the modeling of assembly constraints, as well as the establishment of a communication platform between human and machine actors. This intends to offer methods to increase the accessibility of discrete design methodologies, as well as to hint at possibilities for overcoming the division between design and manufacturing (Carpo 2011; Bard et al. 2014), thus allowing intuitive design decisions to be integrated directly within assembly processes (Johns 2014).
keywords material and construction; construction/robotics; smart assembly/construction; generative system
series ACADIA
email
last changed 2022/06/07 07:56

_id acadia17_660
id acadia17_660
authors Zivkovic, Sasa; Battaglia, Christopher
year 2017
title Open Source Factory: Democratizing Large-Scale Fabrication Systems
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 660- 669
doi https://doi.org/10.52842/conf.acadia.2017.660
summary Open source frameworks have enabled widespread access to desktop-scale additive manufacturing technology and software, but very few highly hackable large-scale or industrial open source equipment platforms exist. As research trajectories continue to move towards large-scale experimentation and full-scale building construction in robotic and digital fabrication, access to industrial fabrication equipment is critical. Large-scale digital fabrication equipment usually requires extensive start-up investments which becomes a prohibitive factor for open research. Expanding on the idea of the Fab Lab as well as the RepRap movement, the Open Source Factory takes advantage of disciplinary expertise and trans-disciplinary knowledge in construction machine design accumulated over the past decade. With the goal to democratize access to large-scale industrial fabrication equipment, this paper outlines the creation of two full-scale fabrication systems: a RepRap based large-scale 3-axis open source CNC gantry and a 6-axis industrial robot system based on a decommissioned KUKA KR200/2. Both machines offer radically different economic frameworks for implementing research in advanced full scale robotic fabrication into contexts of pedagogy, the research lab, practice, or small scale local building industry. This research demonstrates that such equipment can be implemented by building on the current knowledge base in the field. If industrial robots and other large-scale fabrication tools become accessible for all, the collective sharing of research and the development of new ideas in full-scale robotic building construction can be substantially accelerated.
keywords education, society & culture; CAM; prototyping; construction/robotics; education; digital heritage
series ACADIA
email
last changed 2022/06/07 07:57

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_984010 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002