CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 572

_id ijac201715402
id ijac201715402
authors Alaçam, Sema; Orkan Zeynel Güzelci, Ethem Gürer and Saadet Zeynep Bac?noglu
year 2017
title Reconnoitring computational potentials of the vault-like forms: Thinking aloud on muqarnas tectonics
source International Journal of Architectural Computing vol. 15 - no. 4, 285-303
summary This study sheds light on a holistic understanding of muqarnas with its historical, philosophical and conceptual backgrounds on one hand and formal, structural and algorithmic principles on the other hand. The vault-like Islamic architectural element, muqarnas, is generally considered to be a non-structural decorative element. Various compositional approaches have been proposed to reveal the inner logic of these complex geometric elements. Each of these approaches uses different techniques such as measuring, unit-based decoding or three-dimensional interpretation of two-dimensional patterns. However, the reflections of the inner logic onto different contexts, such as the usage of different initial geometries, materials or performative concerns, were neglected. In this study, we offer a new schema to approach the performative aspects of muqarnas tectonics. This schema contains new sets of elements, properties and relations deriving partly from previous approaches and partly from the technique of folding. Thus, this study first reviews the previous approaches to analyse the geometric and constructional principles of muqarnas. Second, it explains the proposed scheme through a series of algorithmic form-finding experiments. In these experiments, we question whether ‘fold’, as one of the performative techniques of making three-dimensional forms, contributes to the analysis of muqarnas in both a conceptual and computational sense. We argue that encoding vault-like systems via geometric and algorithmic relations based on the logic of the ‘fold’ provides informative and intuitive feedback for form-finding, specifically in the earlier phases of design. While focusing on the performative potential of a specific fold operation, we introduced the concept of bifurcation to describe the generative characteristics of folding technique and the way of subdividing the form with respect to redistribution of the forces. Thus, in this decoding process, the bifurcated fold explains not only to demystify the formal logic of muqarnas but also to generate new forms without losing contextual conditions.
keywords Muqarnas, vault, layering, folding, force flow, bifurcation
series journal
email
last changed 2019/08/07 14:03

_id acadia17_128
id acadia17_128
authors Bacharidou, Maroula
year 2017
title Touch, See, Make: Employing Active Touch in Computational Making
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 128-137
doi https://doi.org/10.52842/conf.acadia.2017.128
summary In architectural education and practice, we don’t come in physical contact with what we make until the later stages of the design process. This vision-oriented approach to design is something deeply rooted in architectural practice: from Alberti’s window to the screens of our computers, design has traditionally been more of a visual and less of a hands-on process. The vision of the presented study is that if we want to understand the way we make in order to improve tools for computational design and making, we need to understand how our ability to make things is enhanced by both our visual and tactile mechanisms. Bringing the notion of active touch from psychology into the design studio, I design and execute a series of experiments investigating how seeing, touching, or seeing and touching exhibit different sensory competencies, and how these competencies are expressed through the process of making. The subjects of the experiment are asked to tactilely, visually, or tactilely and visually observe a three-dimensional object, create descriptions of its composition, and to remake it based on their experience of it using plastic materials. After the execution of the experiment, I analyze twenty-one reproductions of the original object; I point to ways in which touch can detect scale and proportions more accurately than vision, while vision can detect spatial components more efficiently than touch; I then propose ways in which this series of experiments can lead to the creation of new design and making tools.
keywords education society & culture; computational / artistic culture;s hybrid practices; digital craft; manual craft
series ACADIA
email
last changed 2022/06/07 07:54

_id caadria2017_002
id caadria2017_002
authors Haeusler, M. Hank, Muehlbauer, Manuel, Bohnenberger, Sascha and Burry, Jane
year 2017
title Furniture Design Using Custom-Optimised Structural Nodes
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 841-850
doi https://doi.org/10.52842/conf.caadria.2017.841
summary Additive manufacturing techniques and materials have evolved rapidly during the last decade. Applications in architecture, engineering and construction are getting more attention as 3D printing is trying to find its place in the industry. Due to high material prices for metal 3d printing and in-homogenous material behaviour in printed plastic, 3D printing has not yet had a very significant impact at the scale of buildings. Limitations on scale, cost, and structural performance have also hindered the advancement of the technology and research up to this point. The research presented here takes a case study for the application of 3D printing at a furniture scale based on a novel custom optimisation approach for structural nodes. Through the concentration of non-standard geometry on the highly complex custom optimised nodes, 3D printers at industrial product scale could be used for the additive manufacture of the structural nodes. This research presents a design strategy with a digital process chain using parametric modeling, virtual prototyping, structural simulation, custom optimisation and additive CAD/CAM for a digital workflow from design to production. Consequently, the digital process chain for the development of structural nodes was closed in a holistic manner at a suitable scale.
keywords Digital fabrication; node optimisation; structural performance; 3D printing; carbon fibre.
series CAADRIA
email
last changed 2022/06/07 07:49

_id caadria2017_142
id caadria2017_142
authors Kaijima, Sawako, Tan, Ying Yi and Lee, Tat Lin
year 2017
title Functionally Graded Architectural Detailing using Multi-Material Additive Manufacturing
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 427-436
doi https://doi.org/10.52842/conf.caadria.2017.427
summary The paper presents a future architectural detailing strategy enabled by the design of functionally graded materials (FGM). In specific, our proposal suggests the possibility of removing mechanical fasteners and adhesives from joint details. This is achieved by combining the principles of interlocking joineries found in traditional timber structures and current Multi-Material Additive Manufacturing (MMAM) technology to materialise FGMs. FGM belongs to a class of advanced materials characterised by variation in properties as the dimension varies by combining two or more materials at a microscopic scale (Mahamood et al. 2012). FGM is ubiquitous in nature and, when properly designed, can exhibit superior performance characteristics compared to objects comprised of homogeneous material properties. With the aim of developing interlocking details with improved performance, reliability, and design flexibility, we focus on controlling material stiffness, joint fitting, and geometry through the design of the microscopic material layout. A case study design will be presented to illustrate the process.
keywords Functionality Graded Material; Multi-Material Additive Manufacturing ; Architectural Detailing; Interlocking Joints
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia17_248
id acadia17_248
authors Felbrich, Benjamin; Fru?h, Nikolas; Prado, Marshall; Saffarian, Saman; Solly, James; Vasey, Lauren; Knippers, Jan; Menges, Achim
year 2017
title Multi-Machine Fabrication: An Integrative Design Process Utilising an Autonomous UAV and Industrial Robots for the Fabrication of Long-Span Composite Structures
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 248-259
doi https://doi.org/10.52842/conf.acadia.2017.248
summary Fiber composite materials have tremendous potential in architectural applications due to their high strength-to-weight ratio and their ability to be formed into complex shapes. Novel fabrication processes can be based on the unique affordances and characteristics of fiber composites. Because these materials are lightweight and have high tensile strength, a radically different approach to fabrication becomes possible, which combines low-payload yet long-range machines—such as unmanned aerial vehicles (UAV)—with strong, precise, yet limited-reach industrial robots. This collaborative concept enables a scalable fabrication setup for long-span fiber composite construction. This paper describes the integrated design process and design development of a large-scale cantilevering demonstrator, in which the fabrication setup, robotic constraints, material behavior, and structural performance were integrated in an iterative design process.
keywords material and construction; fabrication; construction; robotics
series ACADIA
email
last changed 2022/06/07 07:50

_id ecaade2017_210
id ecaade2017_210
authors Jimenez Garcia, Manuel, Soler, Vicente and Retsin, Gilles
year 2017
title Robotic Spatial Printing
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 143-150
doi https://doi.org/10.52842/conf.ecaade.2017.2.143
summary There has been significant research into large-scale 3D printing processes with industrial robots. These were initially used to extrude in a layered manner. In recent years, research has aimed to make use of six degrees of freedom instead of three. These so called "spatial extrusion" methods are based on a toolhead, mounted on a robot arm, that extrudes a material along a non horizontal spatial vector. This method is more time efficient but up to now has suffered from a number of limiting geometrical and structural constraints. This limited the formal possibilities to highly repetitive truss-like patterns. This paper presents a generalised approach to spatial extrusion based on the notion of discreteness. It explores how discrete computational design methods offer increased control over the organisation of toolpaths, without compromising design intent while maintaining structural integrity. The research argues that, compared to continuous methods, discrete methods are easier to prototype, compute and manufacture. A discrete approach to spatial printing uses a single toolpath fragment as basic unit for computation. This paper will describe a method based on a voxel space. The voxel contains geometrical information, toolpath fragments, that is subsequently assembled into a continuous, kilometers long path. The path can be designed in response to different criteria, such as structural performance, material behaviour or aesthetics. This approach is similar to the design of meta-materials - synthetic composite materials with a programmed performance that is not found in natural materials. Formal differentiation and structural performance is achieved, not through continuous variation, but through the recombination of discrete toolpath fragments. Combining voxel-based modelling with notions of meta-materials and discrete design opens this domain to large-scale 3D printing. Please write your abstract here by clicking this paragraph.
keywords discrete; architecture; robotic fabrication; large scale printing; software; plastic extrusion
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia17_38
id acadia17_38
authors Ahlquist, Sean; McGee, Wes; Sharmin, Shahida
year 2017
title PneumaKnit: Actuated Architectures Through Wale- and Course-Wise Tubular Knit-Constrained Pneumatic Systems
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 38-51
doi https://doi.org/10.52842/conf.acadia.2017.038
summary This research explores the development of seamless pneumatically actuated systems whose motion is controlled by the combination of differentially knitted textiles and standardized thin-walled silicone tubing. This work proposes a fundamental material strategy that addresses challenges ranging from soft robotics to pneumatic architecture. Research in soft robotics seeks to achieve complex motions through non-mechanical monolithic systems, comprised of highly articulated shapes molded with a combination of elastic and inelastic materials. Inflatables in architecture focus largely on the active structuring of static forms, as facade systems or as structured envelopes. An emerging use of pneumatic architecture proposes morphable, adaptive systems accomplished through differentiated mechanically interconnected components. In the research described in this paper, a wide array of capabilities in motion and geometric articulation are accomplished through the design of knitted sleeves that generate a series of actuated “elbows.” As opposed to molding silicone bladders, differentiation in motion is generated through the more facile ability of changing stitch structure, and shaping of the knitted textile sleeve, which constrains the standard silicone tubing. The relationship between knit differentiation, pneumatic pressure, and the resultant motion profile is studied initially with individual actuators, and ultimately in propositions for larger seamless assemblies. As opposed to a cellular study of individual components, this research proposes structures with multi-scalar articulation, from fiber and stitch to overall form, composed into seamless, massively deformable architectures.
keywords material and construction; fabrication; construction/robotics
series ACADIA
email
last changed 2022/06/07 07:54

_id ecaade2017_240
id ecaade2017_240
authors Al-Sudani, Amer, Hussein, Hussein and Sharples, Steve
year 2017
title Sky View Factor Calculation - A computational-geometrical approach
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 673-682
doi https://doi.org/10.52842/conf.ecaade.2017.2.673
summary Sky view factor (SVF) is a well-known parameter in urban-climatic studies, but there is a lack of consensus on its effectiveness, especially with regard to the interpretation of changes in urban air temperatures. This led the authors to develop the new concept of the partial sky view factor (SVFp), which showed promise in a previous study. The objective of this study is to save the time associated with manual methods of calculating SVF and SVFp by developing a Rhino-Grasshopper component to quantify them via the hemispheric projection of a 3D model. In addition, a different approach, in terms of a hemispheric projection to calculate SVF, will be introduced by another component, and the pros and cons of each approach are considered. We will name these methods 'Ray Method' and 'Geometrical Method' respectively. The Ray Method has achieved a good balance between accuracy, processing time and urban scale and complexity compared to the Geometrical Method.
keywords Sky view factor; parametric design; Rhino - Grasshopper; urban morphology; partial Sky view factor
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2017_208
id ecaade2017_208
authors Beaudry Marchand, Emmanuel, Han, Xueying and Dorta, Tomás
year 2017
title Immersive retrospection by video-photogrammetry - UX assessment tool of interactions in museums, a case study
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 729-738
doi https://doi.org/10.52842/conf.ecaade.2017.2.729
summary Studying interactions in museums often omits to consider the complexity of the space and the visitors' behaviors. Visitors' walking paths do not provide enough insight of their user experience (UX) since they are distant from the experiential realities. Videogrammetry can convey such dimensions of an environmental experience. Because of limitations of real-time playback, a twofold approach is suggested: "immersive videos" combined with "photogrammetric models". A granular optimal experience assessment method using retrospection interviews is also applied providing a finer evaluation of the perceived experience through time. This method permits to characterize museum interactive installations, according to the perceived challenges and skills of the interaction's task, based this time on immersive retrospection. This paper proposes the "Immersive retrospection" by "Immersive video-photogrammetry" as a UX assessment tool of interactions in museums. A hybrid virtual environment was used in this study, allowing social VR without the use of headsets, through a life-sized projection of interactive 3D content. The study showed that Immersive video-photogrammetry facilitates the recall of memories and allows a deepened self-observation analysis.
keywords immersive retrospection; photogrammetry; videogrammetry; UX assessment; museum environments
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2017_173
id ecaade2017_173
authors Buš, Peter, Hess, Tanja, Treyer, Lukas, Knecht, Katja and Lu, Hangxin
year 2017
title On-site participation linking idea sketches and information technologies - User-driven Customised Environments
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 543-550
doi https://doi.org/10.52842/conf.ecaade.2017.1.543
summary The paper introduces the methodology related to the topic of citizen-driven urban design and revises the idea of on-site participation of end-users, which could prospectively lead to customisation of architectural and urban space in a full-scale. The research in the first phase addresses the engagement of information technologies used for idea sketching in participatory design workshop related to local urban issues in the city of Chur in Switzerland by means of the Skity tool, the sketching on-line platform running on all devices. Skity allows user, which can be individual citizens or a community, to sketch, build, and adapt their ideas for the improvement of an urban locality. The participant is the expert of the locality because he or she lives in this place every day. The content of this paper is focused on the participatory design research project conducted as a study at the ETH Zürich and the Hochschule für Technik und Wirtschaft HTW in Chur in collaboration with Future Cities Laboratory in Singapore, mainly concentrated on the first step of the methodological approach introduced here.
keywords responsive cities; urban mass-customisation; idea sketching; ideation; on-site participation; citizen design science
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2017_011
id sigradi2017_011
authors de Freitas Pires, Janice; Alice Theresinha Cybis Pereira
year 2017
title Modelagem Paramétrica da Geometria Complexa de Estruturas Regenerativas na Arquitetura [Parametric Modeling of Complex Geometry of Regenerative Structures in Architecture]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.84-92
summary The regenerative architecture emerges with an approach beyond the sustainability of buildings, seeking to extend the relationship with the environment, in order to promote the regeneration of living systems, through a complete understanding of the place to design regenerative structures. In this work, with a didactic objective, a study is carried out on the principles of regenerative architecture and its association with recurrent complex geometries in nature, structuring parametric modeling processes of such geometries.
keywords Regenerative architecture; Complex geometry; Teaching architecture; Parametric modeling.
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia17_238
id acadia17_238
authors El-Zanfaly, Dina
year 2017
title A Multisensory Computational Model for Human-Machine Making and Learning
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 238-247
doi https://doi.org/10.52842/conf.acadia.2017.238
summary Despite the advancement of digital design and fabrication technologies, design practices still follow Alberti’s hylomorphic model of separating the design phase from the construction phase. This separation hinders creativity and flexibility in reacting to surprises that may arise during the construction phase. These surprises often come as a result of a mismatch between the sophistication allowed by the digital technologies and the designer’s experience using them. These technologies and expertise depend on one human sense, vision, ignoring other senses that could be shaped and used in design and learning. Moreover, pedagogical approaches in the design studio have not yet fully integrated digital technologies as design companions; rather, they have been used primarily as tools for representation and materialization. This research introduces a multisensory computational model for human-machine making and learning. The model is based on a recursive process of embodied, situated, multisensory interaction between the learner, the machines and the thing-in-the-making. This approach depends heavily on computational making, abstracting, and describing the making process. To demonstrate its effectiveness, I present a case study from a course I taught at MIT in which students built full-scale, lightweight structures with embedded electronics. This model creates a loop between design and construction that develops students’ sensory experience and spatial reasoning skills while at the same time enabling them to use digital technologies as design companions. The paper shows that making can be used to teach design while enabling the students to make judgments on their own and to improvise.
keywords education, society & culture; fabrication
series ACADIA
email
last changed 2022/06/07 07:55

_id cf2017_533
id cf2017_533
authors El-Zanfaly, Dina; Abdelmohsen, Sherif
year 2017
title Imitation in Action: A Pedagogical Approach for Making Kinetic Structures
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 533-545.
summary One of the problems in teaching students how to design kinetic architecture is the difficulty of helping them grasp concepts like motion, physical computing and fabrication, concepts not generally dealt with in conventional architectural projects. In this paper, we introduce a pedagogical method for better utilizing prototyping and explore the role prototyping plays in learning and conceptualizing design ideas. Our method is based on building the learner’s sensory experience through iteration and focusing on the process as well as the product. Specifically, our research attempts to address the following questions: How can architecture students anticipate and feel motion while they design kinetic prototypes? How do their prototypes enable them to explore design ideas? As a case study, we applied our methodology in an 8-week workshop in a fabrication laboratory in Cairo, Egypt. The workshop was open to young architects and students who had completed at least four semesters of study at the university. We describe the pedagogical approach we developed to build the sensory experience of making motion, and demonstrate the basic setting and stages of the workshop. We show how a cyclical learning process, based on perception and action -- copying and iteration -- contributed to the students’ learning experience and enabled them to create and improvise on their own.
keywords Kinetic Architecture, Digital Fabrication, Sensory Experience, Computational Making, Imitation
series CAAD Futures
email
last changed 2017/12/01 14:38

_id cf2017_297
id cf2017_297
authors He, Yi; Schnabel, Marc Aurel; Chen, Rong; Wang, Ning
year 2017
title A Comprehensive Application of BIM Modelling for Semi-underground Public Architecture: A Study for Tiantian Square Complex, Wuhan, China
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 297-308.
summary The paper presents research on how Building Information Modelling (BIM) can be applied comprehensively throughout the design of an architectural project. A practical method based on BIM models that help to deal with multidisciplinary issues by integrating the design information from different sources, collaborators and project stages is formulated by adopting existing available tools. The ‘Tiantian Square’ building project in Wuhan, China combines a subway station with a commercial hug. According to the project’s size and complexity, our study focuses on the multiple cooperation of professionals from different backgrounds, including the departments of architectural design, structure (civil engineering), HVAC (Heating, Ventilation and Air Conditioning), water supply and drainage, and electrics and sustainable design. Our paper presents how the BIM model bridges between various simulation platforms through our technical system and management, including steps of transformation, simplification, analysis, reaction and improvement. Our research has helped to improve the overall efficiency and quality of the project. We generated a successful analysis-design approach for the initial design stages, which does not require in-depth analysis. It is a practical method to immediately evaluate the performance for each design alternative and provide guidelines for design modification. Finally, we discuss how the coordination of different department becomes a crucial factor as we look forward to a more open, communicative and inter-relational design and development process.
keywords BIM, Subway Complex, Simulation, Semi-Underground Architecture
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ecaade2017_013
id ecaade2017_013
authors Junk, Stefan and Gawron, Philipp
year 2017
title Development of parametric CAAD models for the additive manufacturing of scalable architectural models
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 419-426
doi https://doi.org/10.52842/conf.ecaade.2017.1.419
summary Architecture models are an essential component of the development process and enable a physical representation of virtual designs. In addition to the conventional methods of model production using the machining of models made of wood, metal, plastic or glass, a number of additive manufacturing processes are now available. These new processes enable the additive manufacturing of architectural models directly from CAAD or BIM data. However, the boundary conditions applicable to the ability to manufacture models with additive manufacturing processes must also be considered. Such conditions include the minimum wall thickness, which depends on the applied additive manufacturing process and the materials used. Moreover, the need for the removal of support structures after the additive manufacturing process must also be considered. In general, a change in the scale of these models is only possible at very high effort. In order to allow these restrictions to be adequately incorporated into the CAAD model, this contribution develops a parametrized CAAD model that allows such boundary conditions to be modified and adapted while complying with the scale. Usability of this new method is illustrated and explained in detail in a case study. In addition, this article addresses the additive manufacturing processes including subsequent post-processing.
keywords Digital manufacturing; Parametric design; Architectural model
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2017_032
id ecaade2017_032
authors Kepczynska-Walczak, Anetta
year 2017
title Computation As Design Logic Indicator - The Expo Project Experiment
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 279-288
doi https://doi.org/10.52842/conf.ecaade.2017.1.279
summary The city of Lodz is bidding for hosting International EXPO in 2022. The proposed theme is "City Re:Invented". The paper presents the EXPO project experiment conducted at Lodz University of Technology in cooperation with Lodz City Council. The idea was to prepare design proposals for promotional purposes, first in the form of computer visualisations, then as physical scale mock-ups produced in a digital fabrication laboratory. It is planned that the best solutions would be adopted and built in 1:1 scale if Lodz received a nomination. The results of the project are illustrated in the paper by selected examples. The main aim of this study is to examine computational thinking as a design medium. The paper presents background studies in this regard. It also looks into the approach to articulate digital fabrication and robotics as not merely the methods of delivery of a final product but their role in a design process. It deliberates pros and cons of computational design and its influence on creativity. It concludes with a statement that computation may help to construct, reveal, enhance and develop logic in a creation process.
keywords computational design; parametric modelling; digital fabrication; creativity; EXPO
series eCAADe
email
last changed 2022/06/07 07:52

_id cf2017_111
id cf2017_111
authors Kepczynska-Walczak, Anetta; Pietrzak, Anna
year 2017
title An Experimental Methodology for Urban Morphology Analysis
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 111.
summary The paper presents results of a research conducted in 2015 and 2016 at Lodz University of Technology. It proposes a purpose and context fit approach towards the automation of urban data generation based on GIS tools and New Urbanism typologies. First, background studies of methods applied in urban morphology analysis are revealed. Form-Based Code planning, and subsequently Transect-Based Code are taken into account. Then, selected examples from literature are described and discussed. Finally, the research study is presented and the outcomes compared with more traditional methodology.
keywords GIS, Urban morphology, Spatial analysis, Decision support systems, Urban design, Data analytics, Modelling and simulation
series CAAD Futures
email
last changed 2017/12/01 14:37

_id caadria2020_431
id caadria2020_431
authors Kim, Jong Bum, Balakrishnan, Bimal and Aman, Jayedi
year 2020
title Environmental Performance-based Community Development - A parametric simulation framework for Smart Growth development in the United States
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 873-882
doi https://doi.org/10.52842/conf.caadria.2020.1.873
summary Smart Growth is an urban design movement initiated by Environmental Protection Agency (EPA) in the United States (Smart Growth America, 2019). The regulations of Smart Growth control urban morphologies such as building height, use, position, section configurations, façade configurations, and materials, which have an explicit association with energy performances. This research aims to analyze and visualize the impact of Smart Growth developments on environmental performances. This paper presents a parametric modeling and simulation framework for Smart Growth developments that can model the potential community development scenarios, simulate the environmental footprints of each parcel, and visualize the results of modeling and simulation. We implemented and examined the proposed framework through a case study of two Smart Growth regulations: Columbia Unified Development Code (UDC) in Missouri (City of Columbia Missouri, 2017) and Overland Park Downtown Form-based Code (FBC) in Kansas City (City of Overland Park, 2017, 2019). Last, we discuss the implementation results, the limitations of the proposed framework, and the future work. We anticipate that the proposed method can improve stakeholders' understanding of how Smart Growth developments are associated with potential environmental footprints from an expeditious and thorough exploration of what-if scenarios of the multiple development schemes.
keywords Smart Growth; Building Information Modeling (BIM); Parametric Simulation; Solar Radiation
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2024_87
id caadria2024_87
authors Li, Jiongye and Stouffs, Rudi
year 2024
title Distribution of Carbon Storage and Potential Strategies to Enhance Carbon Sequestration Capacity in Singapore: A Study Based on Machine Learning Simulation and Geospatial Analysis
source Nicole Gardner, Christiane M. Herr, Likai Wang, Hirano Toshiki, Sumbul Ahmad Khan (eds.), ACCELERATED DESIGN - Proceedings of the 29th CAADRIA Conference, Singapore, 20-26 April 2024, Volume 2, pp. 89–98
doi https://doi.org/10.52842/conf.caadria.2024.2.089
summary The expansion of urbanization leads to significant changes in land use, consequently affecting carbon storage. This research aims to investigate the carbon loss due to land use alterations and proposes strategies for mitigation. Utilizing existing land use data from 2017 and 2022, along with simulated data for 2025 generated by an ANN model and Cellular Automata, we identified changes in land use. These changes were then correlated with variations in carbon storage, both gains and losses. Our findings reveal a significant loss of 36,859 metric tons of carbon storage from 2017 to 2022. The projection for 2025 estimates a further reduction, reaching a total loss of 83,409 metric tons. By employing the LISA method, we identified that low-carbon storage zones are concentrated in the southeast region of the research site. By overlaying these zones with areas of carbon storage loss, we pinpointed regions severely affected by carbon depletion. Consequently, we propose that mitigation strategies should be imperatively implemented in these identified areas to counteract the trend of carbon storage loss. This approach offers urban planners a solution to identify areas experiencing carbon storage decline. Moreover, our research methodology provides a novel framework for scholars studying similar carbon issues.
keywords land use and land cover (LULC) changes, simulated LULC, machine learning model, carbon storage changes, GIS
series CAADRIA
email
last changed 2024/11/17 22:05

_id ecaade2017_248
id ecaade2017_248
authors Liapi, Katherine, Papantoniou, Andreana and Nousias, Chrysostomos
year 2017
title Square tessellation patterns on curved surfaces:In search of a parametric design method
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 371-378
doi https://doi.org/10.52842/conf.ecaade.2017.2.371
summary Methods for Tessellating a flat surface with regular or semi-regular patterns of polygons have already been addressed in literature and can be easily parameterized. For the tessellation of curved surfaces using patterns of one or more regular polygons there is not a uniquely defined approach to the problem within the context of architectural research and applications. This paper is focused on the tessellation of curved surfaces with square tiles, where the tessellation pattern consists of four squares with partly overlapping sides. In this study double curvature surfaces were considered first, and subsequently surfaces of more complex geometry such as minimal surfaces. Specifically, a method for the square tessellation of two types of doubly curved surfaces, the spherical and the ellipsoidal, is discussed and presented in the paper. In addition, the square tessellation of two types of minimal surfaces, the catenoid and the helicoid, have also been examined and presented. For each one of the surfaces that have been considered, an algorithm that generates the distribution of the planar square surfaces on the surface and renders possible the parametric description of the problem, was developed and presented in the paper. A discussion on boundary conditions for each developed method is also included. The Grasshopper visual programming language has been used for the parametric description and display of the results in a graphic environment. The research discussed in this paper can find application in several real world problems including surface paneling, or space packing of polyhedral structural units on a curved surface.
keywords square tessellation, curved surface tiling, ellipsoid tessellation, minimal surfaces tessellation, geometric appxoximation methods
series eCAADe
email
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_339729 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002