CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 576

_id acadia17_18
id acadia17_18
authors Abdel-Rahman, Amira; Michalatos, Panagiotis
year 2017
title Magnetic Morphing
doi https://doi.org/10.52842/conf.acadia.2017.018
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 18-27
summary In an attempt to design shape-morphing multifunctional objects, this thesis uses programmable matter to design self-organizing multi-agent systems capable of morphing from one shape into another. The research looks at various precedents of self-assembly and modular robotics to design and prototype passive agents that could be cheaply mass-produced. Intelligence will be embedded into these agents on a material level, designing different local interactions to perform different global goals. The initial exploratory study looks at various examples from nature like plankton and molecules. Magnetic actuation is chosen as the external actuation force between agents. The research uses simultaneous digital and physical investigations to understand and design the interactions between agents. The project offers a systemic investigation of the effect of shape, interparticle forces, and surface friction on the packing and reconfiguration of granular systems. The ability to change the system state from a gaseous, liquid, then solid state offers new possibilities in the field of material computation, where one can design a "material" and change its properties on demand.
keywords material and construction; construction/robotics; smart materials; smart assembly/construction; simulation & optimization
series ACADIA
email
last changed 2022/06/07 07:52

_id ecaade2017_198
id ecaade2017_198
authors Hussein, Hussein, Agkathidis, Asterios and Kronenburg, Robert
year 2017
title Free-form Transformation Of Spatial Bar Structures - Developing a design framework for kinetic surfaces geometries by utilising parametric tools
doi https://doi.org/10.52842/conf.ecaade.2017.1.747
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 747-756
summary This paper presents a design framework for free-form transformation of kinetic, spatial bar structures using computational design techniques. Spatial bar structures considered as deployable, transformable kinetic structures composed of straight, linear members, assembled in a three-dimensional configuration. They are often utilised in portable, mobile or transformable buildings. Transformable systems of spatial bar structures are mostly based on modification of primitive shapes (e.g. box, sphere, and cylinder). Each system is subdivided into multiple members having the same shape, the so-called kinetic blocks. Some diverse precedents made to develop other forms of transformation of these structures with some issues. This research project will investigate how a free-form transformation of spatial bar systems can be achieved, by redesigning the kinetic block in relation to architectural, technical parameters. In order to develop a physical prototype of the kinetic block, and assess its potential in enabling free-form transformation of a spatial bar system, a design framework incorporating parametric, algorithmic and kinetic design strategies is required. The proposed design workflow consists of three main phases: form-finding, stability validation and actuation.
keywords Parametric design; Kinetic; transformable; deployable; Free-form; design strategy
series eCAADe
email
last changed 2022/06/07 07:50

_id cf2017_180
id cf2017_180
authors Jun, Ji Won; Silverio, Matteo; Llubia, Josep Alcover; Markopoulou, Areti; Chronis; Angelos; Dubor, Alexandre
year 2017
title Remembrane: A Shape Changing Adaptive Structure
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 180-198.
summary This paper presents a research on adaptive kinetic structures using shape memory alloys as actuators. The target of the research is designing and building an efficient kinetic structural system that could be potentially applied at an architectural scale. The project is based on the study of tensegrity and pantograph structures as a starting point to develop multiple digital and physical models of different structural systems that can be controllably moved. The result of this design process is a performative prototype that is controllable through a web-based interface. The main contribution of this project is not any of the presented parts by themselves but the integration of all of them in the creation of a new adaptive system that allows us to envision a novel way of designing, building and experiencing architecture in a dynamic and efficient way.
keywords Responsive Structures, Kinetic Structures, Adaptive Systems, User Interaction, Structural Optimization
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ecaade2017_133
id ecaade2017_133
authors Ashrafi, Negar and Duarte, José Pinto
year 2017
title A shape-grammar for double skin facades - A basis for generating context sensitive facades solution
doi https://doi.org/10.52842/conf.ecaade.2017.2.471
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 471-476
summary Double skin façade (DSF) is considered one of the best envelope systems in terms of energy efficiency. However, designing an energy efficient DSF system depends on different factors, such as climate, DSF shape and how the air flows in that system. This study presents a methodology to assist design decisions regarding the DSFs shapes. For this purpose, shape grammars was used as a generative design system to generate alternative DSF shape designs. Results of this study can be integrated with an energy simulation tools to calculate the energy demand of each design and consequently design the most efficient DSF system for each context.
keywords building envelope design; double skin façade; generative design system; shape grammars
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2017_155
id ecaade2017_155
authors Beir?o, José Nuno and de Klerk, Rui
year 2017
title CIM-St - A Design Grammar for Street Cross Sections
doi https://doi.org/10.52842/conf.ecaade.2017.2.619
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 619-628
summary The design of streets plays an essential role in shaping the quality of our cities. In particular, the design of a street's cross section determines in many aspects the realm of its use, enhancing or reducing its ability for being walkable streets or traffic oriented streets. This paper shows a street cross section design interface where designs are controlled by an ontology and a parametric design system supported by a shape grammar. The ontology provides a semantically ordered vocabulary of shapes, symbols and descriptions upon which the grammar is defined. This paper focuses on the grammar definitions and its translation into a design oriented interface.
keywords Parametric Design; Ontologies; Compound Grammars; Street Cross Section; Urban Design Systems
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_407
id ecaadesigradi2019_407
authors Capone, Mara, Lanzara, Emanuela, Marsillo, Laura and Nome Silva, Carlos Alejandro
year 2019
title Responsive complex surfaces manufacturing using origami
doi https://doi.org/10.52842/conf.ecaade.2019.2.715
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 715-724
summary Contemporary architecture is considered a dynamic system, capable of adapting to different needs, from environmental to functional ones. The term 'Adaptable Architecture' describes an architecture from which specific components can be changed in relation to external stimuli. This change could be executed by the building system itself, transformed manually or it could be any other ability to be transformed by external forces (Leliveld et al.2017). Adaptability concept is therefore linked to motion and to recent advances in kinetic architecture. In our research we are studying the rules that we can use to design a kinetic architecture using origami. Parametric design allows us to digitally simulate the movement of origami structures, we are testing algorithmic modeling to generate doubly curvature surfaces starting from a designed surface and not from the process. Our main goal is to study the relationship between geometry, motion and shape. We are interested, in particular, in complex surface manufacture using origami technique to design a kinetic and reactive ceiling.
keywords Origami; complex surface manufacture; responsive architecture; Applied Geometry
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id caadria2019_657
id caadria2019_657
authors Chen, Zhewen, Zhang, Liming and Yuan, Philip F.
year 2019
title Innovative Design Approach to Optimized Performance on Large-Scale Robotic 3D-Printed Spatial Structure
doi https://doi.org/10.52842/conf.caadria.2019.2.451
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 451-460
summary This paper presents an innovative approach on designing large-scale spatial structure with automated robotic 3D-printing. The incipient design approach mainly focused on optimizing structural efficiency at an early design stage by transform the object into a discrete system, and the elements in this system contains unique structural parameters that corresponding to its topology results of stiffness distribution. Back in 2017, the design team already implemented this concept into an experimental project of Cloud Pavilion in Shanghai, China, and the 3D-printed spatial structure was partitioned into five zones represent different level of structure stiffness and filled with five kinds of unit toolpath accordingly. Through further research, an upgrade version, the project of Cloud Pavilion 2.0 is underway and will be completed in January 2019. A detailed description on innovative printing toolpath design in this project is conducted in this paper and explains how the toolpath shape effects its overall structural stiffness. This paper contributes knowledge on integrated design in the field of robotic 3D-printing and provides an alternative approach on robotic toolpath design combines with the optimized topological results.
keywords 3D-Printing; Robotic Fabrication; Structural Optimization; Discrete System; Toolpath Design
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2017_069
id ecaade2017_069
authors D'Uva, Domenico
year 2017
title Unfolding the design of architecture as a strategy to assess intellectual property - Bridle pirating architecture
doi https://doi.org/10.52842/conf.ecaade.2017.1.297
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 297-302
summary Modeling tools are evolving the process of architectural design from the use ordinary digital tool into a role of creator of complex shapes, through coding configurations. These procedures are becoming the structural ground of the architectural shape, going beyond their sole tools role. The increasing in importance of such codes implies a major level of awareness for their use, which is worth of a deeper analysis. The system of relations among parts in an architectural design picks a single configuration among infinite others, because it is produced by a design process which find its fulfillment in the final portray. Through the spreading of digital design tools, such final configuration becomes a step in a clearly reproducible process. The project is achieved through a series of starting conditions, which undergo a parametric process, that produces the final result. An identical parametric process can be applied under slightly different starting conditions and produce completely different results. These results are connected with the code which produced them, but is the authorship still property of the original author?
keywords Morphogenesis; Parametric; Authorship
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia17_222
id acadia17_222
authors Dierichs, Karola; Wood, Dylan; Correa, David; Menges, Achim
year 2017
title Smart Granular Materials: Prototypes for Hygroscopically Actuated Shape-Changing Particles
doi https://doi.org/10.52842/conf.acadia.2017.222
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 222-231
summary Hygroscopically Actuated Granular Materials are a new class of designed granular materials in architecture. Granular materials are large numbers of particles that are only in loose contact with each other. If the individual particle in such a granular material is defined in its geometry and material make-up, one can speak of a designed granular material. In recent years these designed granular materials have been explored as architectural construction systems. Since the particles are not bound to each other, granular materials are rapidly reconfigurable and recyclable. Yet one of the biggest assets of designed granular materials is the fact that their overall behavior can be designed by altering the geometry or material make-up of the individual composing particles. Up until now mainly non-actuated granular materials have been investigated. These are designed granular materials in which the geometry of the particle stays the same over time. The proposed Hygroscopically Actuated Granular Materials are systems consisting of time-variable particle geometries. Their potential lies in the fact that one and the same granular system can be designed to display different mechanical behaviors over the course of time. The research presented here encompasses three case studies, which complement each other both with regard to the development of the particle system and the applied construction processes. All three cases are described both with regard to the methods used and the eventual outcome aiming at a potential design system for Hygroscopically Actuated Granular Materials. To conclude, these results are compared and directions of further research are indicated.
keywords material and construction; smart materials; smart assembly/construction
series ACADIA
email
last changed 2022/06/07 07:55

_id cf2017_045
id cf2017_045
authors Gün, Onur Yüce
year 2017
title Computing with Watercolor Shapes: Developing and Analyzing Visual Styles
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 45.
summary Computers help run visually creative processes, yet they remain visually, sensually and tactually distant [1]. This research introduces a drawing and painting process that infuses digital and analog ways of visual-making [2]. It implements a computationally broadened workflow for hand-drawing and painting, and develops a custom drawing apparatus. Primary goal is to develop a computationally generative painting system while retaining embodied actions and tactile material interactions that are intrinsic to the processes of handdrawing and watercolor painting. A non-symbolic, open-ended and trace-based shape calculation system emerges.
keywords Shape, Computing, Painting, Embodied, Watercolor
series CAAD Futures
email
last changed 2017/12/01 14:37

_id cf2017_567
id cf2017_567
authors Kim, Ikhwan; Lee, Injung; Lee, Ji-Hyun
year 2017
title The Expansion of Virtual Landscape in Digital Games: Classification of Virtual Landscapes Through Five principles
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 567-584.
summary This research established classification system which contains five principles and variables to classify the types of the virtual landscape in digital games. The principles of the classification are Story, Space Shape, Space and Action Dimension, User Complexity and Interaction Level. With this classification system, our research group found the most representative types of virtual landscape in the digital game market through 1996 to 2016. Although mathematically there can be 288 types of virtual landscape, only 68 types have been used in the game market in recent twenty years. Among the 68 types, we defined 3 types of virtual landscape as the most representative types based on the growth curve and a number of cases. Those three representative types of virtual landscapes are Generating / Face / 3D-3D / Single / Partial, Providing / Chain / 3D-3D / Single / Partial and Providing / Linear / 2D-2D / Single / Partial. With the result, the researchers will be able to establish the virtual landscape design framework for the future research.
keywords Digital Game, Virtual Landscape, Game Design, Game Classification
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ecaade2017_067
id ecaade2017_067
authors Liu, Chenjun, Wang, Tsung-Hsien, Meagher, Mark and Peng, Chengzhi
year 2017
title Feather-inspired social media data processing for generating developable surfaces: Prototyping an affective architecture - Prototyping an affective architecture
doi https://doi.org/10.52842/conf.ecaade.2017.1.181
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 181-190
summary This paper presents the development of an interactive installation intended as a prototype of experimental affective architecture connected with social media data processing. Social moods and emotions are now spread more widely and faster than ever before due to pervasive uses of social media platforms. We explore how data processing of users' expressions and sharing of moods/emotions through social media can become a source of influences on shaping the form and behaviour of interactive architecture. The interactive prototyping method includes (1) a feather-inspired data-to-shape rule system together with the ShapeOp Library for generating strips as developable surfaces, (2) a physical computing platform built with Arduino micro-processor and shape memory alloy springs for actuation, and (3) physical model-making. As a prototype of social media aware affective architecture, an interactive installation design is proposed for a campus space where the actuation of the strip installation is linked to data processing of Twitter messages collated from users on campus. We reflect on the prototyping methodology and the implications of an architecture affected by people's expression of moods/emotions through social media.
keywords social media data processing; developable surfaces; interactive prototyping; shape memory alloy; elastic morphing; ShapeOp
series eCAADe
email
last changed 2022/06/07 07:59

_id cf2017_199
id cf2017_199
authors Mokhtar, Sarah; Leung, Christopher; Chronis, Angelos
year 2017
title Neighbourhood Shading Impacts on Passive Adaptive Façade Collective Behaviour
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 199-210.
summary The past decade witnessed a shift in adaptive facades from energyintensive complex systems to material-based actuated facades. The latter, however, were only developed with limited control in shape memory alloy applications, and more generally designed as independent components. The perception of the component within a system as a self-regulating entity was shown to widen the behavioural response and intelligence of an adaptive system in several projects. On the other hand, its range of impact and integration as a design factor were not targeted at full breadth in the literature. The study’s objective was to investigate the incorporation of neighbourhood shading behaviour of a shape memory alloy-actuated façade component on the entire system. Based on a designed adaptive component, the research identifies the shading impact on the actuators’ incident solar radiation as well as its hourly and seasonal range, and thus encourages a better prediction of collective behaviour.
keywords Solar Morphing Envelopes, Neighbourhood Shading, Collective Behaviour, Adaptive Facades.
series CAAD Futures
email
last changed 2017/12/01 14:38

_id cf2017_001
id cf2017_001
authors Muslimin, Rizal
year 2017
title Weaving, Folding and the Tension Between Them: A Discourse on a Structural Ideation Method
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 1-21.
summary This paper presents a computational ideation method, aiming to generate different structural configurations using mechanical embedding and visual calculation. A set of schema to register mechanical description and the shape-relationship is provided. Our results point to a promising avenue in terms of how visual calculation and mechanical embedding work in tandem to extend the language of structural design and advance the future of interdisciplinary craft.
keywords Structure, Ideation, Craft, Shape grammar, Tensegrity
series CAAD Futures
email
last changed 2017/12/01 14:37

_id ecaade2017_124
id ecaade2017_124
authors Pantazis, Evangelos and Gerber, David
year 2017
title Emergent order through swarm fluctuations - A framework for exploring self-organizing structures using swarm robotics
doi https://doi.org/10.52842/conf.ecaade.2017.1.075
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 75-84
summary In modern architecture, construction processes are based on top down planning, yet in nature but also in vernacular architecture, the shape of shelters/nests is the result of evolutionary material processes which takes place without any global coordination or plan. This work presents a framework for exploring how self-organizing structures can be achieved in a bottom up fashion by implementing a swarm of simple robots(bristle bots). The robots are used as a hardware platform and operate in a modular 2D arena filled with differently shaped passive building blocks. The robots push around blocks and their behaviour can be programmed mechanically by changing the geometry of their body. Through physical experimentation and video analysis the relationships between the properties of the emergent patterns (size, temporal stability) and the geometry of the robot/parts are studied. This work couples a set of agent based design tools with a robust robotic system and a set of analysis tools for generating and actualising emergent 2D structures.
keywords Multi Agent Systems; Generative Design; Swarm Robotics; Self-organizing patterns
series eCAADe
email
last changed 2022/06/07 08:00

_id sigradi2021_31
id sigradi2021_31
authors Sampaio, Hugo Guimaraes, Lima, Mariana Monteiro Xavier de and Cardoso, Daniel Ribeiro
year 2021
title Parametric Modeling as Record of Memory of Vernacular Boats
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 657–668
summary This work seeks to continue the research started in 2017 about the triangle boat type, based on the traditional models of the municipality of Icapuí in Ceará / Brazil. The intention is to expand and refine the research, analyzing the construction process and the typology of the boats. For this, it is proposed to define a typology and a shape grammar of the boats and implement, in a digitally-based system, a formalized language. The methodology adopted in this work starts from a knowledge construction process following the Design Science Research strategy. The main result is an in-depth analysis of the description and representation of a vernacular design of the triangle boats. The documentation approach using parametric modeling offers great contributions to the memory and cultural heritage preservation, since an algorithmic description is able to retain information pertaining to both the material and immaterial part of the artifact.
keywords Modelagem paramétrica. Patrimônio digital. Patrimônio cultural. Design vernacular. Embarcaçao
series SIGraDi
email
last changed 2022/05/23 12:11

_id acadia17_534
id acadia17_534
authors Savov, Anton; Tessmann, Oliver
year 2017
title Introduction to Playable Voxel-Shape Grammars
doi https://doi.org/10.52842/conf.acadia.2017.534
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 534- 543
summary A shape grammar is a collection of visually defined geometric rules that could be used to automate the generation of formal representations of designs for buildings, cities, products and more. We offer an extension of the shape grammar formalism based entirely on voxel space instead of vectors, which we used for the generation of schematic architectural designs. We describe a method using playability to increase human agency and designer control over the outcome of the generative phase of voxel-shape grammars. The method is presented with an implementation in the environment of Minecraft and employs three guidance mechanisms. To conclude we list a few considerations from our experience in the design of a playable, voxel-shape grammar and point to future work.
keywords design methods; information processing; game engines; generative system; crowdsourcing
series ACADIA
email
last changed 2022/06/07 07:57

_id caadria2017_080
id caadria2017_080
authors Suzuki, Seiichi and Knippers, Jan
year 2017
title Topology-driven Form-finding - Implementation of an Evolving Network Model for Extending Design Spaces in Dynamic Relaxation
doi https://doi.org/10.52842/conf.caadria.2017.489
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 489-498
summary This paper introduces a novel computational design methodology called topology-driven for the numerical form-finding of discrete networks and presents the essential building block for storing and processing information. Numerical form-finding focuses on computing the optimum geometric configuration of lightweight structures in which shape is the result of reciprocal dependencies between forces, material behaviors and structural performances. Among the design community, Dynamic Relaxation (DR) has gained in popularity given its capacity to support more flexible and interactive design spaces in form-finding. However, common implementations of networks models only focus on the interactive exploration of material and geometrical properties without further specification for topological dynamization. For facing this problematic, we propose an object-oriented approach to attach specific functionalities to particular pieces of data within the numerical schema. Here, we describe the implementation of a rule-based system for managing objects´ interactions in order to continuously track topological and geometrical changes. Based on this concept, larger design spaces can be developed for the interactive exploration of structural shapes.
keywords Topology-driven; Form-Finding; Dynamic Relaxation; Object Structures; Design Spaces
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia17_620
id acadia17_620
authors Tsigkari, Martha; Olsson, Jens; Malm, Henrik; Psarras, Stamatios; Aish, Francis
year 2017
title The Computational Challenges of a Mega Space Frame: Shaping the Envelope of New Mexico City Airport
doi https://doi.org/10.52842/conf.acadia.2017.620
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 620- 629
summary The modeling of the envelope and space frame for the new Mexico City Airport was a massive computational task, demanding the development of numerous new methods, tools and processes to deal with its complexity and scale. The shape of the envelope was created through form finding, leading to an all-encompassing lightweight shell with internal spans reaching 130 m. This paper will discuss the challenges faced and the methods used to develop a visually continuous and smooth space-frame model and envelope, while simultaneously complying with very strict spatial and programmatic constraints and structural optimisation criteria. It will further explain how dynamic relaxation was complemented with bespoke mechanisms for mesh manipulation, interfacing and mesh smoothing to fine-tune the final form.
keywords design methods; information processing; simulation & optimization; generative system; form finding
series ACADIA
email
last changed 2022/06/07 07:57

_id caadria2017_005
id caadria2017_005
authors Xia, Tian, Koh, Jing Lin, Chen, Yutong, Goh, Yi Qian and Dritsas, Stylianos
year 2017
title Form-finding with Robotics - Fusing Physical Simulation and Digital Fabrication
doi https://doi.org/10.52842/conf.caadria.2017.893
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 893-902
summary We present an experimental digital design and fabrication process investigating the integration of form-finding and industrial robotics. The design process is inspired by classical experiments producing minimal surfaces and tensile structures via physical simulation. The fabrication process resembles thermoforming whereby sheets of PET material are heat treated and while in a malleable state, where the material behaves like stretchable fabric, an industrial articulated robotic arm impresses a form while the sheet is air cooled and its final shape becomes stable and rigid. The three-dimensional plastic sheets are used as molds for glass-reinforced concrete casting. The key aspects of our approach include: (a) Mold-less fabrication: the design of our robotic end-effector can produce a range of free-form geometries without need for complex mold making (b) Reusable and durable artifacts: unlike traditional physical form-finding processes where the derived form is often ephemeral or fragile our process affords the detachment of a rigid artifacts which can be digitized, used as-is or employed in (c) Multi-stage fabrication: as the form-found geometry can be directly used for processes such as casting with excellent results in terms of surface finish. We present the design and development of our system and its deployment for an installation artwork.
keywords Form-Finding; Digital Fabrication; Architectural Robotics
series CAADRIA
email
last changed 2022/06/07 07:57

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_150715 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002