CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 168

_id cf2017_667
id cf2017_667
authors Cichocka, Judyta; Migalska, Agata; Browne, Will N.; Rodriguez, Edgar
year 2017
title SILVEREYE– the implementation of Particle Swarm Optimization algorithm in a design optimization tool
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 667.
summary Engineers and architects are now turning to use computational aids in order to analyze and solve complex design problems. Most of these problems can be handled by techniques that exploit Evolutionary Computation (EC). However existing EC techniques are slow [8] and hard to understand, thus disengaging the user. Swarm Intelligence (SI) relies on social interaction, of which humans have a natural understanding, as opposed to the more abstract concept of evolutionary change. The main aim of this research is to introduce a new solver Silvereye, which implements Particle Swarm Optimization (PSO) in the Grasshopper framework, as the algorithm is hypothesized to be fast and intuitive. The second objective is to test if SI is able to solve complex design problems faster than ECbased solvers. Experimental results on a complex, single-objective high-dimensional benchmark problem of roof geometry optimization provide statistically significant evidence of computational inexpensiveness of the introduced tool.
keywords Architectural Design Optimization (ADO), Particle Swarm Optimization (PSO), Swarm Intelligence (SI), Evolutionary Computation (EC), Structural Optimization
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ecaade2023_44
id ecaade2023_44
authors Mayrhofer-Hufnagl, Ingrid and Ennemoser, Benjamin
year 2023
title From Linear to Manifold Interpolation: Exemplifying the paradigm shift through interpolation
doi https://doi.org/10.52842/conf.ecaade.2023.2.419
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 419–429
summary The advent of artificial intelligence, specifically neural networks, has marked a significant turning point in the field of computation. During such transformative times, we are often faced with a dearth of appropriate vocabulary, which forces us to rely on existing terms, regardless of their inadequacy. This paper argues that the term “interpolation,” typically used in deep learning (DL), is a prime example of this phenomenon. It is not uncommon for beginners to misunderstand its meaning, as DL pioneer Francois Chollet (2017) has noted. This misreading is especially true in the discipline of architecture, and this study aims to demonstrate how the meaning of “interpolation” has evolved in the second digital turn. We begin by illustrating, using 2D data, the difference between linear interpolation in the context of topological figures and its use in DL algorithms. We then demonstrate how 3DGANs can be employed to interpolate across different topologies in complex 3D space, highlighting the distinction between linear and manifold interpolation. In both 2D and 3D examples, our results indicate that the process does not involve continuous morphing but instead resembles the piecing together of a jigsaw puzzle to form many parts of a larger ambient space. Our study reveals how previous architectural research on DL has employed the term “interpolation” without clarifying the crucial differences from its use in the first digital turn. We demonstrate the new possibilities that manifold interpolation offers for architecture, which extend well beyond parametric variations of the same topology.
keywords Interpolation, 3D Generative Adversarial Networks, Deep Learning, Hybrid Space
series eCAADe
email
last changed 2023/12/10 10:49

_id acadia17_482
id acadia17_482
authors Penman, Scott
year 2017
title Toward Computational Play
doi https://doi.org/10.52842/conf.acadia.2017.482
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 482- 491
summary The day is not far off when autonomous, artificially intelligent agents will be employed in creative industries such as architecture and design. Artificial intelligence is rapidly becoming ubiquitous, and it has absorbed many capabilities once thought beyond its reach. As such, it is critical that we reflect on the relationship between AI and design. Design is often tasked with pushing the envelope in the quest for novel meaning and experience. Designers can’t always rely upon existing models to judge their work. Operating like this requires a curious and open mind, a willingness to eschew reward and occasionally break the rules, and a desire to explore for the sake of exploring. These behaviors fly in the face of traditional implementations of computation and raise difficult questions about the autonomy and subjectivity of artificially intelligent machines. This paper proposes computational play as a field of research that covers how and why designers roam as freely as they do, what the creative potential of such exploration might be, and how such techniques might responsibly be implemented in computational machines. The work argues that autotelism, defined as internal motivation, is an essential aspect of play and outlines how it can be incorporated in a computational framework. The work also demonstrates a proof-of-concept in the form of an autonomous drawing machine that is able to plot a drawing, view the drawing, and make decisions based on what it sees, bringing computational vision and computational drawing together into a cyclical process that permits the use of autotelic play behavior.
keywords design methods; information processing; art and technology; computational / artistic cultures
series ACADIA
email
last changed 2022/06/07 08:00

_id cf2017_199
id cf2017_199
authors Mokhtar, Sarah; Leung, Christopher; Chronis, Angelos
year 2017
title Neighbourhood Shading Impacts on Passive Adaptive Façade Collective Behaviour
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 199-210.
summary The past decade witnessed a shift in adaptive facades from energyintensive complex systems to material-based actuated facades. The latter, however, were only developed with limited control in shape memory alloy applications, and more generally designed as independent components. The perception of the component within a system as a self-regulating entity was shown to widen the behavioural response and intelligence of an adaptive system in several projects. On the other hand, its range of impact and integration as a design factor were not targeted at full breadth in the literature. The study’s objective was to investigate the incorporation of neighbourhood shading behaviour of a shape memory alloy-actuated façade component on the entire system. Based on a designed adaptive component, the research identifies the shading impact on the actuators’ incident solar radiation as well as its hourly and seasonal range, and thus encourages a better prediction of collective behaviour.
keywords Solar Morphing Envelopes, Neighbourhood Shading, Collective Behaviour, Adaptive Facades.
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ecaade2017_254
id ecaade2017_254
authors Werner, Liss C.
year 2017
title A cloud recycling light - (human) feedback matters
doi https://doi.org/10.52842/conf.ecaade.2017.1.699
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 699-708
summary The paper focuses on the question "How does our built environment, urban culture and architectural production change through humans feeding back into digital systems of pre-fabrication and systems fostering industry 4.0?" It discusses some risks and possibilities of digitisation and the city in an era of sustainability, networked design methods, production processes and digital communication tools in the midst of The Internet of Things. Glimpses into the case studies 'a cloud recycling light', 'dynamic field feedback' and 'urban rigid origami switch' discuss the impact of material behaviour, human and machine feedback into digital systems - their behaviour, their ways of communication, the possibility of optimising future design iterations and their form. All of which may result in new architectural and urban typologies, driven by increasingly agile ways of weaving together complex systems.
keywords Industry 4.0; industrial production; Internet of Things; cybernetics; collective intelligence; feedback
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2017_069
id ecaade2017_069
authors D'Uva, Domenico
year 2017
title Unfolding the design of architecture as a strategy to assess intellectual property - Bridle pirating architecture
doi https://doi.org/10.52842/conf.ecaade.2017.1.297
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 297-302
summary Modeling tools are evolving the process of architectural design from the use ordinary digital tool into a role of creator of complex shapes, through coding configurations. These procedures are becoming the structural ground of the architectural shape, going beyond their sole tools role. The increasing in importance of such codes implies a major level of awareness for their use, which is worth of a deeper analysis. The system of relations among parts in an architectural design picks a single configuration among infinite others, because it is produced by a design process which find its fulfillment in the final portray. Through the spreading of digital design tools, such final configuration becomes a step in a clearly reproducible process. The project is achieved through a series of starting conditions, which undergo a parametric process, that produces the final result. An identical parametric process can be applied under slightly different starting conditions and produce completely different results. These results are connected with the code which produced them, but is the authorship still property of the original author?
keywords Morphogenesis; Parametric; Authorship
series eCAADe
email
last changed 2022/06/07 07:56

_id sigradi2017_011
id sigradi2017_011
authors de Freitas Pires, Janice; Alice Theresinha Cybis Pereira
year 2017
title Modelagem Paramétrica da Geometria Complexa de Estruturas Regenerativas na Arquitetura [Parametric Modeling of Complex Geometry of Regenerative Structures in Architecture]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.84-92
summary The regenerative architecture emerges with an approach beyond the sustainability of buildings, seeking to extend the relationship with the environment, in order to promote the regeneration of living systems, through a complete understanding of the place to design regenerative structures. In this work, with a didactic objective, a study is carried out on the principles of regenerative architecture and its association with recurrent complex geometries in nature, structuring parametric modeling processes of such geometries.
keywords Regenerative architecture; Complex geometry; Teaching architecture; Parametric modeling.
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2017_109
id ecaade2017_109
authors Koehler, Daniel
year 2017
title The city as an element of architecture - Discrete automata as an outlook beyond bureaucratic means
doi https://doi.org/10.52842/conf.ecaade.2017.1.523
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 523-532
summary This paper contributes to investigations in the field of aggregative architecture, discrete material assemblies, combinatorial ontologies and their possible up-scaling and implications on urban design. It argues that the digital definition of being discrete is not compatible with earlier, semantic definitions and their connotations on larger scales. Comparable to the breakthroughs in additive assembly by the use of discrete computation this paper demonstrates that the upscaling of discrete notions leads to considerations on the nesting and grouping of parts, here referred to as mereology. Via the means of an exemplary study it introduces the vocabulary of mereology and shows how complex compositions can be articulated with a collection of part-to-whole relations.
keywords mereology; discrete automata ; aggregative architecture; part-to-whole relations; urban design
series eCAADe
email
last changed 2022/06/07 07:51

_id ijac201715402
id ijac201715402
authors Alaçam, Sema; Orkan Zeynel Güzelci, Ethem Gürer and Saadet Zeynep Bac?noglu
year 2017
title Reconnoitring computational potentials of the vault-like forms: Thinking aloud on muqarnas tectonics
source International Journal of Architectural Computing vol. 15 - no. 4, 285-303
summary This study sheds light on a holistic understanding of muqarnas with its historical, philosophical and conceptual backgrounds on one hand and formal, structural and algorithmic principles on the other hand. The vault-like Islamic architectural element, muqarnas, is generally considered to be a non-structural decorative element. Various compositional approaches have been proposed to reveal the inner logic of these complex geometric elements. Each of these approaches uses different techniques such as measuring, unit-based decoding or three-dimensional interpretation of two-dimensional patterns. However, the reflections of the inner logic onto different contexts, such as the usage of different initial geometries, materials or performative concerns, were neglected. In this study, we offer a new schema to approach the performative aspects of muqarnas tectonics. This schema contains new sets of elements, properties and relations deriving partly from previous approaches and partly from the technique of folding. Thus, this study first reviews the previous approaches to analyse the geometric and constructional principles of muqarnas. Second, it explains the proposed scheme through a series of algorithmic form-finding experiments. In these experiments, we question whether ‘fold’, as one of the performative techniques of making three-dimensional forms, contributes to the analysis of muqarnas in both a conceptual and computational sense. We argue that encoding vault-like systems via geometric and algorithmic relations based on the logic of the ‘fold’ provides informative and intuitive feedback for form-finding, specifically in the earlier phases of design. While focusing on the performative potential of a specific fold operation, we introduced the concept of bifurcation to describe the generative characteristics of folding technique and the way of subdividing the form with respect to redistribution of the forces. Thus, in this decoding process, the bifurcated fold explains not only to demystify the formal logic of muqarnas but also to generate new forms without losing contextual conditions.
keywords Muqarnas, vault, layering, folding, force flow, bifurcation
series journal
email
last changed 2019/08/07 14:03

_id caadria2017_002
id caadria2017_002
authors Haeusler, M. Hank, Muehlbauer, Manuel, Bohnenberger, Sascha and Burry, Jane
year 2017
title Furniture Design Using Custom-Optimised Structural Nodes
doi https://doi.org/10.52842/conf.caadria.2017.841
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 841-850
summary Additive manufacturing techniques and materials have evolved rapidly during the last decade. Applications in architecture, engineering and construction are getting more attention as 3D printing is trying to find its place in the industry. Due to high material prices for metal 3d printing and in-homogenous material behaviour in printed plastic, 3D printing has not yet had a very significant impact at the scale of buildings. Limitations on scale, cost, and structural performance have also hindered the advancement of the technology and research up to this point. The research presented here takes a case study for the application of 3D printing at a furniture scale based on a novel custom optimisation approach for structural nodes. Through the concentration of non-standard geometry on the highly complex custom optimised nodes, 3D printers at industrial product scale could be used for the additive manufacture of the structural nodes. This research presents a design strategy with a digital process chain using parametric modeling, virtual prototyping, structural simulation, custom optimisation and additive CAD/CAM for a digital workflow from design to production. Consequently, the digital process chain for the development of structural nodes was closed in a holistic manner at a suitable scale.
keywords Digital fabrication; node optimisation; structural performance; 3D printing; carbon fibre.
series CAADRIA
email
last changed 2022/06/07 07:49

_id ecaade2017_309
id ecaade2017_309
authors Lo Turco, Massimiliano, Zich, Ursula, Astolfi, Arianna, Shtrepi, Louena and Botto Poaola, Matteo
year 2017
title From digital design to physical model - Origami techniques applied to dynamic paneling shapes for acoustic performance control
doi https://doi.org/10.52842/conf.ecaade.2017.2.077
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 77-86
summary The recent trend toward non-standard and free form architecture has generated a lot of debate among the Scientific Community. The reasons can be found in the renewed interest in organic shapes, in addition to recent and powerful capabilities of parametric platforms. In this regard, the Visual Programming Language (VPL) interface gives a high level of freedom and control for conceiving complex shapes. The geometric problems in identifying a suitable shape have been addressed by relying on the study of Origami. The control of variable geometry has required the use of algorithmic models that ensure fast changes and free control of the model, besides a physical one made of rigid cardboard to simulate its rigid-foldability. The aim is to present a prototype of an adaptive structure, with an acoustic application, to control sound quality and perception in spaces where this has a central role, such as theatres or concert halls.
keywords parametric modeling; generative design; shape and form studies; acoustics conditions; digital Representation
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2017_083
id ecaade2017_083
authors Markusiewicz, Jacek and Krê¿lik, Adrian
year 2017
title Human-driven and machine-driven decisions in urban design and architecture - A comparison of two different methods in finding solutions to a complex problem
doi https://doi.org/10.52842/conf.ecaade.2017.1.505
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 505-514
summary The authors of the paper research the aspects of two approaches in human-computer collaboration to solve an urban scale problem: positioning a new cycling-pedestrian bridge in the city of Warsaw. The first approach is a machine-driven stochastic optimization combined with the shortest walk algorithm; the second one is a human-centered process involving an interactive table as a way of communication and data input. Both approaches were explored as part of a one-week student workshop. The article covers the undertaken techniques in detail and presents the outcomes of both studies. It concludes with a reflection on the necessity to inspire a discussion about the future of the architecture among apprentices of the profession: with all the potential threats and opportunities deriving from computer automation.
keywords interface; TUI; optimization; PSO; generative design; programming
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia17_456
id acadia17_456
authors Page, Mitchell
year 2017
title A Robotic Fabrication Methodology for Dovetail and Finger Jointing: An Accessible & Bespoke Digital Fabrication Process for Robotically-Milled Dovetail & Finger Joints
doi https://doi.org/10.52842/conf.acadia.2017.456
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 456- 463
summary Since the advent of industrialized processes in modern construction industries, the development of and relationship between computer-aided tools of design and computer-controlled tools of fabrication has steadily yielded new and innovative construction methodologies. Whilst industry has adopted many of these innovations for use by highly efficient machines and flexible processes, their operation is often highly dependent on industrial scales of production, and thus often inaccessible for small-scale, bespoke and affordable application. The prototype integrated joint milling methodology, case study and open-source software plugin ‘Dove’ presented in this paper, explores the efficacy of algorithmic processes in dynamically generating complex tooling paths and machine code for fabrication of bespoke dovetail and finger joints on a 6-axis industrial robot. The versatility, speed and precision of 6-axis robotic milling, allows us to liberate the efficiency, integrity and aesthetic of the dovetail and finger joint types from traditional application, and apply them to new architectures involving mass-customisation, complex form, and diverse materialities. In the development of full-immersion milling toolpaths and back-face filleting techniques that drastically reduce cutting times, tool path complexity and material waste, this study seeks to build upon past and current research by proposing a comparatively simple, efficient and more intuitive approach to robotically-fabricated integrated jointing for application at a variety of scales.
keywords material and construction; fabrication; construction/robotics; digital craft; manual craft
series ACADIA
email
last changed 2022/06/07 07:58

_id ecaade2017_161
id ecaade2017_161
authors Pietri, Samuel and Erioli, Alessio
year 2017
title Fibrous Aerial Robotics - Study of spiderweb strategies for the design of architectural envelopes using swarms of drones and inflatable formworks
doi https://doi.org/10.52842/conf.ecaade.2017.1.689
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 689-698
summary This thesis research presents an integrated workflow for the design and fabrication of large-scale architectural envelopes using swarms of drones and inflatable structures as formworks. The work lies at the intersection of architecture, biology and robotics, incorporating generative design with digital fabrication techniques. The proposed approach aims to investigate the tectonic potential of computational systems which encode behavioral strategies inside an agent-based model. It is from local interactions taking place at the micro-scale of complex systems that a new set of architectural tendencies seem to emerge. The authors focused on the strategies developed by colonies of social spiders during the construction of three-dimensional webs. Their communication system and the characteristics of the material structure have been then modelled and translated in a digital environment. A physical fabrication process, in which the simulated agents become drones in a real world environment, was concurrently developed. The goal was to investigate the architectural possibilities given by an autonomous aerial machine depositing fibrous material over inflatable formworks and its potential usefulness in specific sites where overall conditions don't allow traditional construction techniques.
keywords tectonics; robotics; multi-agent systems; stigmergy; drones; inflatables
series eCAADe
email
last changed 2022/06/07 08:00

_id ecaade2017_026
id ecaade2017_026
authors Renev, Ivan, Chechurin, Leonid and Perlova, Elena
year 2017
title Early design stage automation in Architecture-Engineering-Construction (AEC) projects
doi https://doi.org/10.52842/conf.ecaade.2017.1.373
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 373-382
summary The paper is dedicated to conceptual design stage in AEC projects since this stage defines most of further design and even construction. Conceptual design is less automated and more human depended part of a complex design process. It is reasonable to link modern construction design software with ideas generation techniques in order to enhance and automate design creativity and effectiveness. In the article we propose computer-aided automation of searching for new conceptual ideas and nontrivial solutions during early design stage in AEC projects using such TRIZ tools as Function Modelling and Trimming in BIM technology. For description of our approach we consider framed buildings.
keywords TRIZ; BIM; AEC; Function analysis; Trimming
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia17_502
id acadia17_502
authors Rosenwasser, David; Mantell, Sonya; Sabin, Jenny
year 2017
title Clay Non-Wovens: Robotic Fabrication and Digital Ceramics
doi https://doi.org/10.52842/conf.acadia.2017.502
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 502- 511
summary Clay Non-Wovens develops a new approach for robotic fabrication, applying traditional craft methods and materials to a fundamentally technical and precise fabrication methodology. This paper includes new explorations in robotic fabrication, additive manufacturing, complex patterning, and techniques bound in the arts and crafts. Clay Non-Wovens seeks to develop a system of porous cladding panels that negotiate circumstances of natural daylighting through parameters dealing with textile (woven and non-woven) patterning and line typologies. While additive manufacturing has been built predominantly on the basis of extrusion, technological developments in the field of 3D printing seldom acknowledge the bead or line of such extrusions as more than a nuisance. Blurring of recognizable layers is often seen as progress, but it does away with visible traces of a fabrication process. Historically, however, construction methods in architecture and the building industry have celebrated traces of making ranging from stone cutting to log construction. With growing interest in digital craft within the fields of architecture and design, we seek to reconcile our relationship with the extruded bead and reinterpret it as a fiber and three-dimensional drawing tool. The traditional clay coil is to be reconsidered as a structural fiber rather than a tool for solid construction. Building upon this body of robotically fabricated clay structures required the development of three distinct but connected techniques: 1. construction of a simple end effector for extrusion; 2. development of a clay body and; 3. using computational design tools to develop formwork and toolpath geometries.
keywords design methods; information processing; fabrication; digital craft; manual craft; prototyping
series ACADIA
email
last changed 2022/06/07 07:56

_id ecaade2017_225
id ecaade2017_225
authors Rossi, Andrea and Tessmann, Oliver
year 2017
title Geometry as Assembly - Integrating design and fabrication with discrete modular units
doi https://doi.org/10.52842/conf.ecaade.2017.2.201
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 201-210
summary This paper proposes a design and fabrication approach based on the conceptualization of architectural formations as spatial assemblies of discrete building blocks to be aggregated through custom robotic procedures. Such strategy attempts to create synergies between different technological methods and to define a new and open design space where discrete design, serial prototyping and robotic assembly can be exploited to create complex reconfigurable structures. With the aim to allow users to explore the field of discrete geometries for architectural application without need for prior programming knowledge, we developed a software framework for representing and designing with discrete elements, different digital fabrication techniques integrated with conventional production processes for serial prototyping of repetitive units, and custom robotic fabrication routines, allowing a direct translation from aggregated geometry to assembly toolpath. Together these methods aim at creating a more direct connection between design and fabrication, relying on the idea of discrete elements assembly and on the parallel between modular design and modularized robot code generation.
keywords Digital Materials; Robotic Assembly; Discrete Design; Modular Fabrication; Design Tools
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2017_009
id caadria2017_009
authors Yang, Xuyou, Koh, Shawn Jyh Shen, Loh, Paul and Leggett, David
year 2017
title Robotic Variable Fabric Formwork
doi https://doi.org/10.52842/conf.caadria.2017.873
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 873-882
summary Casting is one of the most widely used construction techniques. Complex geometries produced via computational design processes are not easily achievable through traditional rigid formwork and are subject to increase material waste. More suitable casting techniques are required to efficiently represent digital design output. This paper presents a variable fabric formwork developed to work in conjunction with a 6-axis robotic arm for casting doubly curved panels based on hyperbolic paraboloid geometry. The variable formwork is designed to be extendable in length and width so it is able to produce a wide range of outcome within a single formwork. The interface established in the workflow allows the physical formwork and digital design to influence each other. This variable fabric formwork reduces construction waste and is a more sustainable method of casting complex geometries.
keywords Digital fabrication; Robotic production; fabric casting
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia17_324
id acadia17_324
authors Kilian, Axel; Sabourin, François
year 2017
title Embodied Computation – An Actuated Active Bending Tower: Using Simulation-Model-Free Sensor Guided Search To Reach Posture Goals
doi https://doi.org/10.52842/conf.acadia.2017.324
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 324- 329
summary The concept of Embodied Computation is to leverage the combination of abstract computational and material artifact as a method for exploration in the design process. A common approach for the integration of the two realms is to use computational simulation based on the geometric form of the artifact for the prediction of material behavior. This leads to the integration of a geometric model abstraction of the physical artifact into the control software of the actuated device and can produce deviations between the state of the physical construct and the computational state. Here an alternative approach of a soft, actuated, active bending structure is explored. Six fluidic actuators are combined with a six degree of freedom (DOF) sensor for posture feedback. Instead of relying on simulated kinematics to reach a particular posture, the sensor-enabled posture feedback guides a simplex search algorithm to find combinations of pressures in the six actuators that minimize the combined tilting angles for the goal of a level tower top. Rather than simulating the structure computationally, the model is shifted to one of feedback and control, and the structure operates as a physical equation solver returning an x-y-z tilting angle for every set of actuation pressures. Therefore the computational model of the search process is independent of the physical configuration of the structure itself and robust to changes in the environment or the structure itself. This has the future potential for more robust control of non-determined structures and constructs with heterogeneous DOF common in architecture where modeling behavior is difficult.
keywords material and construction; smart buildings
series ACADIA
email
last changed 2022/06/07 07:52

_id acadia17_18
id acadia17_18
authors Abdel-Rahman, Amira; Michalatos, Panagiotis
year 2017
title Magnetic Morphing
doi https://doi.org/10.52842/conf.acadia.2017.018
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 18-27
summary In an attempt to design shape-morphing multifunctional objects, this thesis uses programmable matter to design self-organizing multi-agent systems capable of morphing from one shape into another. The research looks at various precedents of self-assembly and modular robotics to design and prototype passive agents that could be cheaply mass-produced. Intelligence will be embedded into these agents on a material level, designing different local interactions to perform different global goals. The initial exploratory study looks at various examples from nature like plankton and molecules. Magnetic actuation is chosen as the external actuation force between agents. The research uses simultaneous digital and physical investigations to understand and design the interactions between agents. The project offers a systemic investigation of the effect of shape, interparticle forces, and surface friction on the packing and reconfiguration of granular systems. The ability to change the system state from a gaseous, liquid, then solid state offers new possibilities in the field of material computation, where one can design a "material" and change its properties on demand.
keywords material and construction; construction/robotics; smart materials; smart assembly/construction; simulation & optimization
series ACADIA
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 8HOMELOGIN (you are user _anon_873531 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002