CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 569

_id cf2017_414
id cf2017_414
authors Shireen, Naghmi; Erhan, Halil; Woodbury, Robert; Wang, Ivy
year 2017
title Making Sense of Design Space: What Designers do with Large Numbers of Alternatives?
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 414.
summary Today’s generative design tools and large screen displays present opportunities for designers to explore large number of design alternatives. Besides numerous studies in design, the act of exploring design space is yet to be integrated in the design of new digital media. To understand how designer’s search patterns will uncover when provided with a gallery of large numbers of design solutions, we conducted a lab experiment with nine designers. Particularly the study explored how designers used spatial structuring of their work environment to make informed design decisions. The results of the study present intuitions for development of next generation front-end gallery interfaces for managing a large set of design variations while enabling simultaneous editing of design parameters.
keywords Parametric design, Alternatives, Design space exploration, New interfaces, New media, Protocol analysis, User study
series CAAD Futures
email
last changed 2017/12/01 14:38

_id sigradi2017_075
id sigradi2017_075
authors Vilhena, Maria Laura; Ana Paula Baltazar, Ana Paula Pitzer, Camila Oddi Duran, Larissa Reis, Maria Cecília Rocha, Marllon Morais
year 2017
title Tecnologias digitais para tornar visíveis informações sócio-espaciais [Digital technologies to make socio-spatial information visible]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.513-518
summary This paper discusses the association of SPSS, combined to Google Forms, and GEPHI in the context of a socio-spatial data collection in Glaura (a district of Ouro Preto/MG – Brazil), for the development of a technical advisory method using interfaces. It also describes the steps of using these softwares, their potentials, the difficulties found throughout the process, and the qualitative analysis based on the graphic and tabular results of the data. The main goal is to make visible complex information about the socio-spatial relations within the community to further use it to inform the conception of interfaces.
series SIGRADI
email
last changed 2021/03/28 19:59

_id ecaade2017_091
id ecaade2017_091
authors Schubert, Gerhard, Bratoev, Ivan and Petzold, Frank
year 2017
title Visual Programming meets Tangible Interfaces - Generating city simulations for decision support in early design stages
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 515-522
doi https://doi.org/10.52842/conf.ecaade.2017.1.515
summary The utilization of visual programming languages (VPL) as tools for generating complex simulations has seen a constant increase in application in architect planning phases. The major advantage of such languages is, that they enable the user to create programs without needing traditional software development skills. In the last few years the CDP // Collaborative Design Platform was developed that seamlessly connects physical models with analyses and simulations in real-time. To facilitate an easier creation, modification and user interaction with the individual simulations, a VPL and an accompanying IDE were conceptualized and developed. In the context of this paper the core requirements, the concept and prototypical implementation of these new components are described in detail.
keywords visual programming language; tangible interface; simulation; urban planning
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2017_033
id ecaade2017_033
authors Yan, Wei
year 2017
title WP-BIM: Web-based Parametric BIM Towards Online Collaborative Design and Optimization
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 527-534
doi https://doi.org/10.52842/conf.ecaade.2017.2.527
summary We present initial experiments of Web-based Parametric Building Information Modeling (WP-BIM) towards collaborative design, modeling, simulation, and optimization. A new framework that integrates Web-based information technology (WebGL graphics, networking, and Web browsers), and design computing technology (visual programming) into parametric BIM is prototyped for the experiments. The integration of Web technology is going to enable online collaborative and user participatory design. Connected through the Web platform, a BIM model, visual programming-based user interfaces for parametric changes, and an optimization algorithm, which may reside in different servers or local computers in different geographical locations, have the potential to be integrated and working together to resolve design optimization problems, especially if combined with cloud-based performance simulation tools. After future development, this may allow architects, engineers, clients, etc. to collaboratively work on a project with up-to-date building data and different design and simulation tools.
keywords Web-based; Parametric Modeling; BIM; Collaborative Design; Optimization
series eCAADe
email
last changed 2022/06/07 07:57

_id sigradi2017_016
id sigradi2017_016
authors Alexandre da Silva, Geovany Jessé; Carlos Alejandro Nome, Lucy Donegan
year 2017
title Ferramentas de Projeto para análise da qualidade urbana: Relacionando forma, usos, densidade e configuração espacial na cidade de João Pessoa, Brasil. [Design tools to assess urban quality: Relating form, uses, density and spatial configuration in João Pessoa city, Brazil.]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.123-129
summary This paper describes an experience in a Graduate course Architecture and Urbanism that used computational tools to analyze urban quality – considering form, uses, density and spatial configuration (based on visual and fields) – in different urban areas in the city of João Pessoa. Understanding that the city is a problem in organized complexity, different aspects condition the quality of use of spaces and reveal urban dynamics. Urban analysis aided by computational tools revealed successful in characterizing different problems and potentialities that can lay the foundation for interventions with more urban quality.
keywords Design computational tools; Study of urban form, uses and density; Urban space performance; Spatial configuration.
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia17_82
id acadia17_82
authors Andreani, Stefano; Sayegh, Allen
year 2017
title Augmented Urban Experiences: Technologically Enhanced Design Research Methods for Revealing Hidden Qualities of the Built Environment
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 82-91
doi https://doi.org/10.52842/conf.acadia.2017.082
summary The built environment is a complex juxtaposition of static matter and dynamic flows, tangible objects and human experiences, physical realities and digital spaces. This paper offers an alternative understanding of those dichotomies by applying experimental design research strategies that combine objective quantification and subjective perception of urban contexts. The assumption is that layers of measurable datasets can be afforded with personal feedback to reveal "hidden" characteristics of cities. Drawing on studies from data and cognitive sciences, the proposed method allows us to analyze, quantify and visualize the individual experience of the built environment in relation to different urban qualities. By operating in between the scientific domain and the design realm, four design research experiments are presented. Leveraging augmenting and sensing technologies, these studies investigate: (1) urban attractors and user attention, employing eye-tracking technologies during walking; (2) urban proxemics and sensory experience, applying proximity sensors and EEG scanners in varying contexts; (3) urban mood and spatial perception, using mobile applications to merge tangible qualities and subjective feelings; and (4) urban vibe and paced dynamics, combining vibration sensing and observational data for studying city beats. This work demonstrates that, by adopting a multisensory and multidisciplinary approach, it is possible to gain a more human-centered, and perhaps novel understanding of the built environment. A lexicon of experimented urban situations may become a reference for studying different typologies of environments from the user experience, and provide a framework to support creative intuition for the development of more engaging, pleasant, and responsive spaces and places.
keywords design methods; information processing; art and technology; hybrid practices
series ACADIA
email
last changed 2022/06/07 07:54

_id acadia17_128
id acadia17_128
authors Bacharidou, Maroula
year 2017
title Touch, See, Make: Employing Active Touch in Computational Making
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 128-137
doi https://doi.org/10.52842/conf.acadia.2017.128
summary In architectural education and practice, we don’t come in physical contact with what we make until the later stages of the design process. This vision-oriented approach to design is something deeply rooted in architectural practice: from Alberti’s window to the screens of our computers, design has traditionally been more of a visual and less of a hands-on process. The vision of the presented study is that if we want to understand the way we make in order to improve tools for computational design and making, we need to understand how our ability to make things is enhanced by both our visual and tactile mechanisms. Bringing the notion of active touch from psychology into the design studio, I design and execute a series of experiments investigating how seeing, touching, or seeing and touching exhibit different sensory competencies, and how these competencies are expressed through the process of making. The subjects of the experiment are asked to tactilely, visually, or tactilely and visually observe a three-dimensional object, create descriptions of its composition, and to remake it based on their experience of it using plastic materials. After the execution of the experiment, I analyze twenty-one reproductions of the original object; I point to ways in which touch can detect scale and proportions more accurately than vision, while vision can detect spatial components more efficiently than touch; I then propose ways in which this series of experiments can lead to the creation of new design and making tools.
keywords education society & culture; computational / artistic culture;s hybrid practices; digital craft; manual craft
series ACADIA
email
last changed 2022/06/07 07:54

_id ijac201715106
id ijac201715106
authors Cardoso Llach, Daniel; Ardavan Bidgoli and Shokofeh Darbari
year 2017
title Assisted automation: Three learning experiences in architectural robotics
source International Journal of Architectural Computing vol. 15 - no. 1, 87-102
summary Fueled by long-standing dreams of both material efficiency and aesthetic liberation, robots have become part of mainstream architectural discourses, raising the question: How may we nurture an ethos of visual, tactile, and spatial exploration in technologies that epitomize the legacies of industrial automation—for example, the pursuit of managerial efficiency, control, and an ever-finer subdivision of labor? Reviewing and extending a growing body of research on architectural robotics pedagogy, and bridging a constructionist tradition of design education with recent studies of science and technology, this article offers both a conceptual framework and concrete strategies to incorporate robots into architectural design education in ways that foster a spirit of exploration and discovery, which is key to learning creative design. Through reflective accounts of three learning experiences, we introduce the notions “assisted automation” and “robotic embodiment” as devices to enrich current approaches to robot–human design, highlighting situated and embodied aspects of designing with robotic machines.
keywords Design education, architectural robotics, computational design, robot–human collaboration, studies of science and technology
series other
type normal paper
email
last changed 2019/08/02 08:28

_id ecaade2017_027
id ecaade2017_027
authors Carl, Timo, Schein, Markus and Stepper, Frank
year 2017
title Sun Shades - About Designing Adaptable Solar Facades
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 165-174
doi https://doi.org/10.52842/conf.ecaade.2017.2.165
summary External shading structures are a well-established typology for reducing solar heat loads. A major disadvantage is their inflexible nature, blocking views from inside and desired solar radiation for seasons with less sunshine hours. An adaptive approach on the other end can accommodate dynamic environmental exchange and user control. Furthermore, kinetic movement has great potential to create expressive spatial structures. However, such typologies are inherently complex. This paper presents the design process for two novel adaptive façade typologies, conducted on an experimental level in an educational context. Moreover, we will discuss the conception of a suitable methodological framework, which we applied to engage the complexity of this design task. Thereby we will highlight the importance of employing various methods, combining analogue and computational models not in a linear sequence, but rather in an overlapping, iterative way to create an innovation friendly design setting. The Sun Shades project offers insight into the relationships between design potentials inherent in adaptable structures and the advantages and limitation of computational methods employed to tackle them.
keywords computational design methodology; performance-based design; associative geometry modelling; solar simulation; physical form-finding; design theory
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia17_178
id acadia17_178
authors Charbel, Hadin; López, Déborah
year 2017
title In(di)visible: Computing Immersive Environments through Hybrid Senses
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 178-189
doi https://doi.org/10.52842/conf.acadia.2017.178
summary The research presented in this paper seeks to examine how architecture and computational tools can be used to communicate on multiple levels by incorporating a series of qualitative and quantitative measures as criteria for a spatial and architectural design. Air is taken as a material that has the capacity to create boundaries, yet unless under extreme conditions often remains invisible. Varying in qualities such as temperature, humidity and pollution, the status of air is highly local to a particular context. The research explores how rendering air visible through an architectural intervention made of networked sentient prototypes can be used in the reation of a responsive outdoor public space. Although humans' ability to perceive and respond to stimuli is highly advanced, it is nevertheless limited in its spectrum. Within the urban context specifically, the information, material and flux being produced is becoming ever more complex and incomprehensible. While computational tools, sensors and data are increasingly accessible, advancements in the fields of cognitive sciences and biometrics are unraveling how the mind and body works. These developments are explored in tandem and applied through a proposed methodology. The project aims to negotiate the similarities and differences between humans and machines with respect to the urban environment. The hypothesis is that doing so will create a rich output, irreducible to a singular reading while heightening user experience and emphasizing a sense of place.
keywords design methods; information processing; hybrid practices; data visualization; computational / artistic cultures
series ACADIA
email
last changed 2022/06/07 07:55

_id sigradi2017_013
id sigradi2017_013
authors Fernández González, Alberto
year 2017
title Modelamiento visual de conceptos espaciales en Taller de Diseño Arquitectónico 1-2 [Visual spatial concepts modeling at Architectural Design Studio 1-2]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.100-105
summary This research presents results of visual modeling strategies introduction, associated with spatial ideas, being all referred to the work done in the Architectural Design Studio 1-2 at the University of Chile. The applied project methodology seeks to lay the foundations of an incremental draft strategy, which allows a smooth transition between the analog conceptual stages to a digital inclusion of similar criteria of visual modeling in early stages of architectural design. That methodology allows to students to decode their concepts to digital shapes, using point, lines, and triangles as analog-digital translators for each proposal.
keywords Architectural design; Translation; Shapes; Analog to Digital
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia20_382
id acadia20_382
authors Hosmer, Tyson; Tigas, Panagiotis; Reeves, David; He, Ziming
year 2020
title Spatial Assembly with Self-Play Reinforcement Learning
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 382-393.
doi https://doi.org/10.52842/conf.acadia.2020.1.382
summary We present a framework to generate intelligent spatial assemblies from sets of digitally encoded spatial parts designed by the architect with embedded principles of prefabrication, assembly awareness, and reconfigurability. The methodology includes a bespoke constraint-solving algorithm for autonomously assembling 3D geometries into larger spatial compositions for the built environment. A series of graph-based analysis methods are applied to each assembly to extract performance metrics related to architectural space-making goals, including structural stability, material density, spatial segmentation, connectivity, and spatial distribution. Together with the constraint-based assembly algorithm and analysis methods, we have integrated a novel application of deep reinforcement (RL) learning for training the models to improve at matching the multiperformance goals established by the user through self-play. RL is applied to improve the selection and sequencing of parts while considering local and global objectives. The user’s design intent is embedded through the design of partial units of 3D space with embedded fabrication principles and their relational constraints over how they connect to each other and the quantifiable goals to drive the distribution of effective features. The methodology has been developed over three years through three case study projects called ArchiGo (2017–2018), NoMAS (2018–2019), and IRSILA (2019-2020). Each demonstrates the potential for buildings with reconfigurable and adaptive life cycles.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2017_021
id caadria2017_021
authors Hwang, Ji-Hyoun and Lee, Hyunsoo
year 2017
title 3D Visual Simulation and Numerical Measurement of Privacy in Traditional Korean Palace
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 355-363
doi https://doi.org/10.52842/conf.caadria.2017.355
summary Traditional Korean architecture provides privacy through a proper balance of openness and enclosure through courtyard gardens. However, it is difficult to analyse privacy quantitatively in a three-dimensional space. The analysis of visual privacy is a significant issue in resolving conflicts and enhancing comfort. This paper develops a computational algorithm for simulating and measuring privacy on the concept of prospect and refuge: a design strategy for psychological wellbeing. In order to visualize privacy, the prospect area ratio (PAR) and refuge area ratio (RAR) are used in 3D visual simulations. PAR and RAR calculate the area ratio of the hiding space or the visible space in the images collected from the 3D model. In addition, parametric algorithms are proposed to calculate PAR/RAR automatically. Finally, this research demonstrates a case study of Gyeongbokgung, one of the five palace buildings in Korea, to show methods and processes of the quantitative analysis of visual privacy. The outcome of this paper contributes to quantitative confirmation of spatial characteristics that clearly distinguish between public space and private space of Gyeongbokgung. The proposed method also shows great potentials to quickly obtain the numeric value of privacy.
keywords 3D simulation; numerical measurement; traditional Korean palace; privacy
series CAADRIA
email
last changed 2022/06/07 07:50

_id cf2017_111
id cf2017_111
authors Kepczynska-Walczak, Anetta; Pietrzak, Anna
year 2017
title An Experimental Methodology for Urban Morphology Analysis
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 111.
summary The paper presents results of a research conducted in 2015 and 2016 at Lodz University of Technology. It proposes a purpose and context fit approach towards the automation of urban data generation based on GIS tools and New Urbanism typologies. First, background studies of methods applied in urban morphology analysis are revealed. Form-Based Code planning, and subsequently Transect-Based Code are taken into account. Then, selected examples from literature are described and discussed. Finally, the research study is presented and the outcomes compared with more traditional methodology.
keywords GIS, Urban morphology, Spatial analysis, Decision support systems, Urban design, Data analytics, Modelling and simulation
series CAAD Futures
email
last changed 2017/12/01 14:37

_id cf2017_110
id cf2017_110
authors Koenig, Reinhard; Miao, Yufan; Knecht, Katja; Bus, Peter; Mei-Chih, Chang
year 2017
title Interactive Urban Synthesis: Computational Methods for Fast Prototyping of Urban Design Proposals
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 110.
summary In this paper, we present a method for generating fast conceptual urban design prototypes. We synthesize spatial configurations for street networks, parcels and building volumes. Therefore, we address the problem of implementing custom data structures for these configurations and how the generation process can be controlled and parameterized. We exemplify our method by the development of new components for Grasshopper/Rhino3D and their application in the scope of selected case studies. By means of these components, we show use case applications of the synthesis algorithms. In the conclusion, we reflect on the advantages of being able to generate fast urban design prototypes, but we also discuss the disadvantages of the concept and the usage of Grasshopper as a user interface.
keywords Procedural grammars, Artificial intelligence in design, Urban synthesis, Generative design, Grasshopper plugin, Cognitive design computing
series CAAD Futures
email
last changed 2017/12/01 14:37

_id caadria2017_016
id caadria2017_016
authors Lee, Ju Hyun, Ostwald, Michael J. and Yu, Rongrong
year 2017
title Investigating Visibility Properties in the Design of Aged-Care Facilities
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 365-374
doi https://doi.org/10.52842/conf.caadria.2017.365
summary This paper uses a Space Syntax approach - a computational and mathematical method using graph-based measurements - to undertake a comparative assessment of the visibility properties of three architectural plans with unusual spatial requirements. Specifically, the method is used to compare the spatio-visual properties of an idealised plan for a residential aged-care facility with the actual plans used for two facilities. The purpose of this analysis is to begin to examine the ways in which syntactical values and isovist properties can be used to capture spatial and social characteristics of plans designed for the physical and cognitive needs of an ageing populace. The application of this approach seeks to support a better understanding of the relationship between spaces and their social properties in the design of aged-care facilities.
keywords visibility analysis; Space Syntax; spatial cognition; social property
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2017_004
id caadria2017_004
authors Lo, Tian Tian, Schnabel, Marc Aurel and Moleta, Tane J.
year 2017
title Gamification for User-Oriented Housing Design - A Theoretical Review
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 63-72
doi https://doi.org/10.52842/conf.caadria.2017.063
summary Fluctuating economies and changing family demographics have increased the complexity in meeting the spatial needs for contemporary housing. Digital systems that allow flexibility are growing in demand but its rate of development is not catching up with the rapid changes. This paper explores how digital interventions can limit or help the process of collaborative design in high-density mass housing context. One key factor in user-oriented design system is participation. Many researchers have looked into system usability, design simplification and realistic visualisation to provide an immersive experience for users to engage the design. This paper argues how gamification acts as a form of decision support within a bigger framework model for a user-oriented digital design system. Using three levels of rules: constitutive rules, operational rules and implicit rules, the aim is for users to generate a housing design outcome not only for themselves but also collaboratively with other users through gamification.
keywords gamification; user-oriented; digital intervention; decision support; mass housing
series CAADRIA
email
last changed 2022/06/07 07:59

_id cf2017_389
id cf2017_389
authors Sorrou, Marilena; Meagher, Mark
year 2017
title Flat Form: A Software Design for Capturing the Contribution of Personality and Ordinary Activities in the Design Process
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 389-401.
summary Flat form is an ongoing research that introduces a workflow that aims to enhance the contribution of the user during the design process. At first, implicit as well as explicit data, about both space as a living place and the user as a personality, will be captured. Then, the data will be analyzed in order to build an ontology that will eventually be visualized in human readable format. After that, an external application will evaluate the resulting data structure, pointing out any potential conflict between the spatial arrangement and the user’s desires. The outcome will be visualized in a form of a topological diagram that will constitute a new augmented “active” memory for the architect.
keywords Participatory Design, Ontology, Topological Representation, Human-Computer Interaction
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ecaade2017_229
id ecaade2017_229
authors Decker, Martina
year 2017
title Soft Human Computer Interfaces - Towards Soft Robotics in Architecture
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 739-744
doi https://doi.org/10.52842/conf.ecaade.2017.2.739
summary The emergence of media infused facades and new human computer interfaces have been of great interest in architecture in the recent decades. Most of the emerging examples are geared towards a multi-dimensional graphical output and most commonly stimulate our sense of sight. This paper explores recent developments in soft robotics and material sciences, developed at the Material Dynamics Lab at NJIT, that will allow the human computer interfaces to engage its users by captivating a multitude of senses simultaneously. Furthermore, this paper will contemplate future trajectories for the novel material strategies to improve human-computer or human-robot interaction, that one day may lead to truly robotic architectures.
keywords Soft Robotics; Nanotechnology; Smart Materials; Robotic Architecture; Human Computer Interfaces (HCI); Graphical User Interfaces (GUI) to Tangible User Interfaces (TUI)
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia17_318
id acadia17_318
authors Khan, Sumbul; Tunçer, Bige
year 2017
title Intuitive and Effective Gestures for Conceptual Architectural Design: An Analysis Of User Elicited Hand Gestures For 3D CAD Modeling
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 318- 323
doi https://doi.org/10.52842/conf.acadia.2017.318
summary Gesture-based natural interfaces necessitate research into gestures that are intuitive for designers and effective for natural interaction. Intuitive knowledge is significant for conceptual design as it reduces time taken to complete tasks and improves usability of products. In a previously conducted experiment, we elicited gestures for 3D CAD modeling tasks for conceptual architectural design. In this study, we present a preliminary analysis of intuitiveness scores of gestures and evaluators’ ratings to analyze which gestures were more intuitive and effective for CAD manipulation tasks. Results show that gestures with high intuitive scores were not necessarily rated as effective by evaluators and that bimanual symmetric gestures consistently scored high for both intuitiveness and effectiveness. Based on our findings we give recommendations for the design of gesture-based CAD modeling systems for single and multiple users.
keywords design methods; information processing; HCI; collaboration; art and technology
series ACADIA
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_854989 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002