CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 576

_id acadia17_324
id acadia17_324
authors Kilian, Axel; Sabourin, François
year 2017
title Embodied Computation – An Actuated Active Bending Tower: Using Simulation-Model-Free Sensor Guided Search To Reach Posture Goals
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 324- 329
doi https://doi.org/10.52842/conf.acadia.2017.324
summary The concept of Embodied Computation is to leverage the combination of abstract computational and material artifact as a method for exploration in the design process. A common approach for the integration of the two realms is to use computational simulation based on the geometric form of the artifact for the prediction of material behavior. This leads to the integration of a geometric model abstraction of the physical artifact into the control software of the actuated device and can produce deviations between the state of the physical construct and the computational state. Here an alternative approach of a soft, actuated, active bending structure is explored. Six fluidic actuators are combined with a six degree of freedom (DOF) sensor for posture feedback. Instead of relying on simulated kinematics to reach a particular posture, the sensor-enabled posture feedback guides a simplex search algorithm to find combinations of pressures in the six actuators that minimize the combined tilting angles for the goal of a level tower top. Rather than simulating the structure computationally, the model is shifted to one of feedback and control, and the structure operates as a physical equation solver returning an x-y-z tilting angle for every set of actuation pressures. Therefore the computational model of the search process is independent of the physical configuration of the structure itself and robust to changes in the environment or the structure itself. This has the future potential for more robust control of non-determined structures and constructs with heterogeneous DOF common in architecture where modeling behavior is difficult.
keywords material and construction; smart buildings
series ACADIA
email
last changed 2022/06/07 07:52

_id cf2017_225
id cf2017_225
authors De Luca, Francesco; Voll, Hendrik
year 2017
title Solar Collection Multi-isosurface Method: Computational Design Advanced Method for the Prediction of Direct Solar Access in Urban Environments
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 225.
summary Direct solar access and daylight requirements contribute significantly when it comes to shaping the layout and appearance of contemporary cities. Urban planning regulations in Estonia set the minimum amount of direct solar access that existing housing has the right to receive and new premises are required to get when new developments are built. The solar envelope and solar collection methods are used to define the volume and shape of new buildings that allow the due solar rights to the surrounding buildings, in the case of the former, and the portion of the own façades that receive the required direct solar access, in the case of the latter. These methods have been developed over a period of several decades, and present-day CAAD and environmental analysis software permits the generation of solar envelopes and solar collection isosurfaces, although they suffer from limitations. This paper describes an advanced method for generating solar collection isosurfaces and presents evidence that it is significantly more efficient than the existing method for regulation in Estonia’s urban environments.
keywords Urban planning, Direct solar access, Solar envelope, Solar collection, Computational design, Environmental design
series CAAD Futures
email
last changed 2017/12/01 14:38

_id cf2017_309
id cf2017_309
authors da Silva, Juliano Lima; Mussi, Andrea Quadrado; Ribeiro, Lauro Andre; da Silva, Thaisa Leal
year 2017
title Plug-ins State of Art in BIM Software: Repositories Assessment and Professional Use Perspective
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 309-320.
summary The increased need for optimization in design processes has led BIM software users to customize their projects by the use of programming and external applications. This paper presents the state of art of Revit plug-ins by means of an explorative, quantitative study of current repositories and the proposition of a categorization system to identify to which purposes the tools are being developed. Then, through a questionnaire to AEC professionals, assessment on the use and necessity of the tools is made by comparing the user experience with the proposed state of art categories.
keywords BIM, Revit, Plug-ins, Programming, Survey
series CAAD Futures
email
last changed 2017/12/01 14:38

_id sigradi2017_061
id sigradi2017_061
authors Lobos Calquín, Danny Alfredo; Lorena Del Pilar Silva Castillo
year 2017
title BIM y CES. Dos agendas de gobierno unidas a través de las Tecnologías Digitales [BIM and CES. Two government agendas brought together through ICT tools]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.417-422
summary The paper discusses the intersection of two main agendas for Chilean governments that are BIM (Building Information Modeling) and BEAM (Building Environmental Assessment Methods). It shows the state-of-the-art in both fields in Chile as well as in the world, it discusses some previous efforts of integration; it found some new opportunities for collaboration and finally proposes a new framework that brings together BIM and BEAM. The development of the method includes BIM Models, databases and spread sheets for building energy Certification, it finally provides a semi-automatic environment where architects model their design in BIM and this Information is used as an input to the certification process. Potentials and risk of this method are discussed.
keywords BIM (Building Information Modeling); BPS (Building Performance Simulation); BEAM (Building Environmental Assessment Methods); Architectural Design; Interoperability.
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2017_048
id sigradi2017_048
authors Lobos, Danny; Clara Codron Lechuga, Clara Codron Lechuga, Victor Nunez Bustos
year 2017
title BIM y Madera. Nuevos desafíos para el Diseño y Construcción [BIM and Wood. New challenges for Design and Construction]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.328-334
summary The work compiles several academic and Research initiatives, and aims to establish a right link between two agendas that governments, AEC industry and academia normally handle separated, this is BIM (Building Information Modeling) and Wood. By running several literature reviews, interviews and software tests, the state-of-the-art was reached in both fields; several cases linking BIM and wood are shown and discussed. It can be concluded that both fields have several commons processes and also that many cases have used just a few BIM tools, disregarding a big potential of these methodologies.
keywords Wood; BIM (Building Information Modeling); Architectural Design; Building Construction.
series SIGRADI
email
last changed 2021/03/28 19:58

_id cf2017_229
id cf2017_229
authors Osório, Filipa; Paio, Alexandra; Oliveira, Sancho
year 2017
title Kinetic Origami Surfaces: From Simulation to Fabrication
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 229-248.
summary On nowadays social, technological and economic context everything changes constantly so there is the persistent need to adapt at all levels. This research defends that Architecture should do the same through the use of kinetic and interactive buildings, or elements in a building. These elements should allow the building to adapt to changing needs and conditions. This article describes the current state of an ongoing research that proposes the use of kinetic Rigid Origami foldable surfaces to be used as roofs for spaces with big spans and the practical contribution that the Design Studio Surfaces INPLAY has brought to it.
keywords Origami Geometry, Parametric Design, Kinetic Architecture, Digital Fabrication, Design Studio
series CAAD Futures
email
last changed 2017/12/01 14:38

_id acadia17_630
id acadia17_630
authors Vasanthakumar, Saeran; Saha, Nirvik; Haymaker, John; Shelden, Dennis
year 2017
title Bibil: A Performance-Based Framework to Determine Built Form Guidelines
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 630- 639
doi https://doi.org/10.52842/conf.acadia.2017.630
summary City built-form guidelines act as durable constraints on building design decisions. Such guidelines directly impact energy, comfort and other performance conditions. Existing urban design and planning methods only consider a narrow range of potential design scenarios, with rudimentary performance criteria, resulting in suboptimal urban designs. Bibil is a software plugin for the Rhinoceros3D/Grasshopper3D CAD modeler that addresses this gap through the synthesis of design space exploration methods to help design teams optimize guidelines for environmental and energy performance criteria over the life cycle of the city. Bibil consists of three generative and data management modules. The first module simulates development scenarios from street and block information through time, the second designs appropriate architectural typology, and the third abstracts the typologies into a lightweight analysis model for detailed thermal load and energy simulation. State-of-the-art performance simulation is done via the Ladybug Analysis Tools Grasshopper3D plugin, and further bespoke analysis to explore the resulting design space is achieved with custom Python scripts.This paper first introduces relevant background for automated exploration of urban design guidelines. Then the paper surveys the state-of-the-art in design and performance simulation tools in the urban domain. Next the paper describes the beta version of the tool’s three modules and its application in a built form study to assess urban canyon performance in a major North American city. Bibil enables the exploration of a broader range of potential design scenarios, for a broader range of performance criteria, over a longer period of time.
keywords design methods; information processing; simulation & optimization; form finding; generative system
series ACADIA
email
last changed 2022/06/07 07:58

_id caadria2017_147
id caadria2017_147
authors Agirachman, Fauzan Alfi, Ozawa, Yo, Indraprastha, Aswin, Shinozaki, Michihiko, Sitompul, Irene Debora Meilisa, Nuraeni, Ruri, Chirstanti, Augustine Nathania, Putra, Andrew Cokro and Zefanya, Teresa
year 2017
title Reimagining Braga - Remodeling Bandung's Historical Colonial Streetscape in Virtual Reality
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 23-32
doi https://doi.org/10.52842/conf.caadria.2017.023
summary This paper presents the experience of the first phase of remodeling existing historical and colonial district in Bandung, Indonesia, including existing building façade, streetscape and street furniture. Braga Street is chosen as study case because it is a well-known historical street in Bandung with art deco style buildings constructed during Dutch colonial era. By remodeling it, it could help stakeholders to evaluate existing Braga street condition, to test any modification of buildings along the street and to determine specific regulation for the street. In this case, we use Unity3D and Oculus Rift DK2 for remodeling current situation. We gathered feedback from respondents using a questionnaire given after they experienced the model in VR. Many lessons learned from modeling process and respondents' feedback: higher frame rate to make seamless VR experience by having all components on a low poly model and provide smoother movement to prevent visual discomfort. This paper's conclusion gives suggestions for anyone who want to start architecture modeling in virtual reality for the very first time and how to optimize it.
keywords Virtual reality; historical building; digital reconstruction; streetscape
series CAADRIA
email
last changed 2022/06/07 07:54

_id ijac201715106
id ijac201715106
authors Cardoso Llach, Daniel; Ardavan Bidgoli and Shokofeh Darbari
year 2017
title Assisted automation: Three learning experiences in architectural robotics
source International Journal of Architectural Computing vol. 15 - no. 1, 87-102
summary Fueled by long-standing dreams of both material efficiency and aesthetic liberation, robots have become part of mainstream architectural discourses, raising the question: How may we nurture an ethos of visual, tactile, and spatial exploration in technologies that epitomize the legacies of industrial automation—for example, the pursuit of managerial efficiency, control, and an ever-finer subdivision of labor? Reviewing and extending a growing body of research on architectural robotics pedagogy, and bridging a constructionist tradition of design education with recent studies of science and technology, this article offers both a conceptual framework and concrete strategies to incorporate robots into architectural design education in ways that foster a spirit of exploration and discovery, which is key to learning creative design. Through reflective accounts of three learning experiences, we introduce the notions “assisted automation” and “robotic embodiment” as devices to enrich current approaches to robot–human design, highlighting situated and embodied aspects of designing with robotic machines.
keywords Design education, architectural robotics, computational design, robot–human collaboration, studies of science and technology
series other
type normal paper
email
last changed 2019/08/02 08:28

_id ecaade2017_027
id ecaade2017_027
authors Carl, Timo, Schein, Markus and Stepper, Frank
year 2017
title Sun Shades - About Designing Adaptable Solar Facades
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 165-174
doi https://doi.org/10.52842/conf.ecaade.2017.2.165
summary External shading structures are a well-established typology for reducing solar heat loads. A major disadvantage is their inflexible nature, blocking views from inside and desired solar radiation for seasons with less sunshine hours. An adaptive approach on the other end can accommodate dynamic environmental exchange and user control. Furthermore, kinetic movement has great potential to create expressive spatial structures. However, such typologies are inherently complex. This paper presents the design process for two novel adaptive façade typologies, conducted on an experimental level in an educational context. Moreover, we will discuss the conception of a suitable methodological framework, which we applied to engage the complexity of this design task. Thereby we will highlight the importance of employing various methods, combining analogue and computational models not in a linear sequence, but rather in an overlapping, iterative way to create an innovation friendly design setting. The Sun Shades project offers insight into the relationships between design potentials inherent in adaptable structures and the advantages and limitation of computational methods employed to tackle them.
keywords computational design methodology; performance-based design; associative geometry modelling; solar simulation; physical form-finding; design theory
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2017_037
id sigradi2017_037
authors Cenci, Laline; Rodreigo Garcia Alvarado
year 2017
title Modelado paramétrico y fabricación digital para la concepción de edificios de museo ambientalmente adecuados para el clima subtropical húmedo de Brasil. [Parametric modeling and digital manufacturing for the conception of museum buildings environmentally suitable for the subtropical wetland climate of Brazil.]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.257-261
summary Museums exhibit a growing development in the world, promoting buildings with significant expressions. Nevertheless, the relation of the building and its environmental performance is fundamental in the conception of new buildings. The problem originates in the early stages of design, where it is not possible to evaluate it environmentally. The methodology uses three art museum buildings in the humid subtropical climate of Brazil, whose geometries are completely different. After analyzing and relating its performance to its environmental and geometric characteristics a parametric modeling tool is proposed and the digital manufacture as a product of the process has been carried out.
keywords Parametric Modeling; Digital Manufacturing; Art museums; Environmental Compatibility; Subtropical Humid Climate of Brazil.
series SIGRADI
email
last changed 2021/03/28 19:58

_id cf2017_051
id cf2017_051
authors Chen, Kian Wee; Janssen, Patrick; Norford, Leslie
year 2017
title Automatic Parameterisation of Semantic 3D City Models for Urban Design Optimisation
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 51-65.
summary We present an auto-parameterisation tool, implemented in Python, that takes in a semantic model, in CityGML format, and outputs a parametric model. The parametric model is then used for design optimisation of solar availability and urban ventilation potential. We demonstrate the tool by parameterising a CityGML model regarding building height, orientation and position and then integrate the parametric model into an optimisation process. For example, the tool parameterises the orientation of a design by assigning each building an orientation parameter. The parameter takes in a normalised value from an optimisation algorithm, maps the normalised value to a rotation value and rotates the buildings. The solar and ventilation performances of the rotated design is then evaluated. Based on the evaluation results, the optimisation algorithm then searches through the parameter values to achieve the optimal performances. The demonstrations show that the tool eliminates the need to set up a parametric model manually, thus making optimisation more accessible to designers.
keywords City Information Modelling, Conceptual Urban Design, Parametric Modelling, Performance-Based Urban Design
series CAAD Futures
email
last changed 2017/12/01 14:37

_id caadria2018_333
id caadria2018_333
authors Cupkova, Dana, Byrne, Daragh and Cascaval, Dan
year 2018
title Sentient Concrete - Developing Embedded Thermal and Thermochromic Interactions for Architecture and Built Environment
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 545-554
doi https://doi.org/10.52842/conf.caadria.2018.2.545
summary Historically, architectural design focused on adaptation of built environment to serve human needs. Recently embedded computation and digital fabrication have advanced means to actuate physical infrastructure in real-time. These 'reactive spaces' have typically explored movement and media as a means to achieve reactivity and physical deformation (Chatting et al. 2017). However, here we recontextualize 'reactive' as finding new mechanisms for permanent and non-deformable everyday materials and environments. In this paper, we describe our ongoing work to create a series of complex forms - modular concrete panels - using thermal, tactile and thermochromic responses controlled by embedded networked system. We create individualized pathways to thermally actuate these surfaces and explore expressive methods to respond to the conditions around these forms - the environment, the systems that support them, their interaction and relationships to human occupants. We outline the design processes to achieve thermally adaptive concrete panels, illustrate interactive scenarios that our system enables, and discuss opportunities for new forms of interactivity within the built environment.
keywords Responsive environments; Geometrically induced thermodynamics; Ambient devices; Internet of things; Modular electronic systems
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia17_212
id acadia17_212
authors De Luca, Francesco
year 2017
title Solar Form Finding: Subtractive Solar Envelope and Integrated Solar Collection Computational Method for High-Rise Buildings in Urban Environments
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 212-221
doi https://doi.org/10.52842/conf.acadia.2017.212
summary Daylight standards contribute significantly to the form of buildings and the urban environment. Direct solar access of existing and new buildings can be considered through the use of solar envelope and solar collection isosurface methods. The first determines the maximum volume and shape that new buildings cannot exceed to guarantee the required solar rights on existing surrounding facades. The latter predicts the portion of facades of new buildings that will receive the required direct sunlight hours in urban environments. Nowadays, environmental design software based on the existing methods permits the generation of solar envelopes and solar collection isosurfaces to use in the schematic design phase. Nevertheless, the existing methods and software present significant limitations when used to design buildings that must fulfil the Estonian daylight standard. Recent research has successfully developed computational workflows based on the existing methods and available tools to tackle such shortcomings. The present work uses the findings to propose a novel computational method to generate solar envelopes and integrate solar collection analysis. It is a subtractive form-finding method that is more efficient than the existing additive methods and other recent workflows when it is applied to high-rise buildings in fragmented urban environments. The tests performed show that the new method permits the realisation of compliant and larger solar envelopes, which furthermore embed formal properties. The objective of the research is to contribute to the development of computational methods and tools to integrate direct solar access performance efficiently into the design process.
keywords design methods; information processing; simulation & optimization; form finding
series ACADIA
email
last changed 2022/06/07 07:55

_id ecaade2017_164
id ecaade2017_164
authors De Luca, Francesco
year 2017
title From Envelope to Layout - Buildings Massing and Layout Generation for Solar Access in Urban Environments
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 431-440
doi https://doi.org/10.52842/conf.ecaade.2017.2.431
summary The use of daylight for the inhabitants health and comfort purposes and for the energy efficiency of buildings influences significantly the shape and outlook of urban environments. The solar envelope and solar collection surface are methods to define the massing of buildings for direct solar access requirements. They have been recently improved to be used in the design of buildings in relation to the Estonian daylight standard. Nevertheless the solar collection method can be applied only to single buildings with simple shape. The present research investigates the direct solar access performance of building clusters with multiple layouts in different urban areas in the city of Tallinn. Result show that different patterns perform in significant different ways whereas the same cluster types have the best and the least performances in all the cases.
keywords Urban design; Direct solar access; Solar envelope; Environmental analysis; Computational design
series eCAADe
email
last changed 2022/06/07 07:55

_id cf2017_419
id cf2017_419
authors Dickey, Rachel
year 2017
title Soft Computing in Design: Developing Automation Strategies from Material Indeterminacies
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 419-430.
summary Integrating concepts of soft computation into advanced manufacturing and architecture means perceiving the element of chance not as a hindrance, but as an opportunity. The projects examined in this manuscript explore opportunities for integrating material indeterminacy into advanced manufacturing by pairing a certain degree material unpredictability with the rigid order of machine control. The three projects described investigate three common categories of automated tooling including additive processes, subtractive processes and molding / casting processes. Each project begins with the question, what opportunities might arise from the mediation between material volition and computational control? By embracing indeterminate material results and taking an optimistic stance on chance and uncertainty, which are usually treated as problems rather than values, the intent is to provide ways for automating unique material effects and explore the opportunities for integrating soft computing in design.
keywords Robotics, 3d Printing, Digital Fabrication, Automation, Indeterminacy
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ecaade2017_001
id ecaade2017_001
authors Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.)
year 2017
title ShoCK! – Sharing of Computable Knowledge!, Volume 2
source ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, 760 p.
doi https://doi.org/10.52842/conf.ecaade.2017.2
summary Internet of Things, pervasive nets, Knowledge ‘on tap’, Big Data, Wearable devices and the ‘Third wave’ of AI are disruptive technologies that are upsetting our globalised world as far as it can be foreseen from now. So academicians, professionals, researchers, innovation factories... are warmly invited to further shake up and boost our innovative and beloved CAAD world with new ideas, paradigms and points of view. Will our fine buildings and design traditions survive? Or, will they ‘simply’ be hybridized and enhanced by methods, techniques and CAAD tools? Obviously computation is needed to match the evergrowing performance requirements, but this is not enough to answer all these questions we have to deal with the essence of problems: improve design solutions for a better life. As life is not a matter of single individuals, we need to increase collaboration and to improve knowledge sharing. This means taking care of human beings, and involves a humanistic approach, and the long history of humankind ... from humans to thinking to technology ... and vice versa. A circle of human beings as eternal as our city.
series eCAADe
last changed 2022/06/07 07:49

_id ecaade2017_000
id ecaade2017_000
authors Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.)
year 2017
title ShoCK! – Sharing of Computable Knowledge!, Volume 1
source ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, 770 p.
doi https://doi.org/10.52842/conf.ecaade.2017.1
summary Internet of Things, pervasive nets, Knowledge ‘on tap’, Big Data, Wearable devices and the ‘Third wave’ of AI are disruptive technologies that are upsetting our globalised world as far as it can be foreseen from now. So academicians, professionals, researchers, innovation factories... are warmly invited to further shake up and boost our innovative and beloved CAAD world with new ideas, paradigms and points of view. Will our fine buildings and design traditions survive? Or, will they ‘simply’ be hybridized and enhanced by methods, techniques and CAAD tools? Obviously computation is needed to match the evergrowing performance requirements, but this is not enough to answer all these questions we have to deal with the essence of problems: improve design solutions for a better life. As life is not a matter of single individuals, we need to increase collaboration and to improve knowledge sharing. This means taking care of human beings, and involves a humanistic approach, and the long history of humankind ... from humans to thinking to technology ... and vice versa. A circle of human beings as eternal as our city.
series eCAADe
last changed 2022/06/07 07:49

_id ecaade2021_103
id ecaade2021_103
authors Hussein, Hussein E. M., Agkathidis, Asterios and Kronenburg, Robert
year 2021
title Towards a Free-form Transformable Structure - A critical review for the attempts of developing reconfigurable structures that can deliver variable free-form geometries
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 381-390
doi https://doi.org/10.52842/conf.ecaade.2021.2.381
summary In continuation of our previous research (Hussein, et al., 2017), this paper examines the kinetic transformable spatial-bar structures that can alter their forms from any free-form geometry to another, which can be named as Free-form transformable structures (FFTS). Since 1994, some precedents have been proposed FFTS for many applications such as controlling solar gain, providing interactive kinetic forms, and control the users' movement within architectural/urban spaces. This research includes a comparative analysis and a critical review of eight FFTS precedents, which revealed some design and technical considerations, issues, and design and evaluation challenges due to the FFTS ability to deliver infinite unpredictable form variations. Additionally, this research presents our novel algorithmic framework to design and evaluate the infinite form variations of FFTS and an actuated prototype that achieved the required movement. The findings of this study revealed some significant design and technical challenges and limitations that require further research work.
keywords Kinetic transformable structures; finite element analysis; form-finding; deployable structures; Grasshopper 3D; Karamba 3D
series eCAADe
email
last changed 2022/06/07 07:50

_id cf2017_349
id cf2017_349
authors Kim, Eonyong; Kim, Kibum; Choo, Seungyeon; Ryu, Jikeun
year 2017
title Rule-based Security Planning System for Practical Application
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 349-359.
summary Security planning is a vital part of the operation and management phase in a building’s life cycle. Ideally, this will be addressed during the building design phase. However, reality often differs from this ideal. In the real world, information such as floor plans tend to insufficiently describe or imperfectly match physical buildings, and must be surveyed and re-worked during security planning. Because of this, security companies require two kinds of staff: those in the security business and those in charge of planning, including floor plan verification. This research focused on creating an efficient way to help staff in this work environment develop a system of security planning for buildings and facilities using a rule-based approach in a tailormade CAD system. In this research, we developed a new 3D CAD system for desktops and mobile devices, which specializes in security planning using a game-engine. To avoid errors during security planning, a rule-based check system was developed and integrated into the CAD system. The rule-set of this rule base was built from the security planning manual, including guidelines on equipment layout and wiring in various situations, which could then be used in the development of an automated check. This research describes the method of system development and final results.
keywords Security Planning, Operation and Management, Rule Base, BIM, CAD
series CAAD Futures
email
last changed 2017/12/01 14:38

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_383024 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002