CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 563

_id caadria2019_657
id caadria2019_657
authors Chen, Zhewen, Zhang, Liming and Yuan, Philip F.
year 2019
title Innovative Design Approach to Optimized Performance on Large-Scale Robotic 3D-Printed Spatial Structure
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 451-460
doi https://doi.org/10.52842/conf.caadria.2019.2.451
summary This paper presents an innovative approach on designing large-scale spatial structure with automated robotic 3D-printing. The incipient design approach mainly focused on optimizing structural efficiency at an early design stage by transform the object into a discrete system, and the elements in this system contains unique structural parameters that corresponding to its topology results of stiffness distribution. Back in 2017, the design team already implemented this concept into an experimental project of Cloud Pavilion in Shanghai, China, and the 3D-printed spatial structure was partitioned into five zones represent different level of structure stiffness and filled with five kinds of unit toolpath accordingly. Through further research, an upgrade version, the project of Cloud Pavilion 2.0 is underway and will be completed in January 2019. A detailed description on innovative printing toolpath design in this project is conducted in this paper and explains how the toolpath shape effects its overall structural stiffness. This paper contributes knowledge on integrated design in the field of robotic 3D-printing and provides an alternative approach on robotic toolpath design combines with the optimized topological results.
keywords 3D-Printing; Robotic Fabrication; Structural Optimization; Discrete System; Toolpath Design
series CAADRIA
email
last changed 2022/06/07 07:54

_id cf2017_199
id cf2017_199
authors Mokhtar, Sarah; Leung, Christopher; Chronis, Angelos
year 2017
title Neighbourhood Shading Impacts on Passive Adaptive Façade Collective Behaviour
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 199-210.
summary The past decade witnessed a shift in adaptive facades from energyintensive complex systems to material-based actuated facades. The latter, however, were only developed with limited control in shape memory alloy applications, and more generally designed as independent components. The perception of the component within a system as a self-regulating entity was shown to widen the behavioural response and intelligence of an adaptive system in several projects. On the other hand, its range of impact and integration as a design factor were not targeted at full breadth in the literature. The study’s objective was to investigate the incorporation of neighbourhood shading behaviour of a shape memory alloy-actuated façade component on the entire system. Based on a designed adaptive component, the research identifies the shading impact on the actuators’ incident solar radiation as well as its hourly and seasonal range, and thus encourages a better prediction of collective behaviour.
keywords Solar Morphing Envelopes, Neighbourhood Shading, Collective Behaviour, Adaptive Facades.
series CAAD Futures
email
last changed 2017/12/01 14:38

_id cf2017_276
id cf2017_276
authors Zarrinmehr, Saied; Akleman, Ergun; Ettehad, Mahmood; Kalantar, Negar; Borhani, Alireza
year 2017
title Kerfing with Generalized 2D Meander-Patterns: Conversion of Planar Rigid Panels into Locally-Flexible Panels with Stiffness Control
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 276-293.
summary In this paper, we present a kerfing (relief-cutting) method to turn rigid planar surfaces into flexible ones. Our kerfing method is based on a generalization of the 2D meander-pattern recently invented by Dujam Ivaniševiĉ. We have developed algorithms to obtain a large subset of all possible 2D meander-patterns with a simple remeshing process. Our algorithm can be applied to any polygonal mesh to produce 2D meander-patterns. The algorithm, when applied to regular (4,4) tiling pattern, in which every face is 4-sided and every vertex is 4-valence, provides the original 2D meander-pattern of Ivaniševiĉ. Moreover, since these meander-patterns are obtained by a remeshing algorithm, by changing parameters, we can control local properties of the pattern with intensity of images to obtain desired stiffness in any given region (See Fig.1). This approach provides a simple interface to construct desired patterns.
keywords Kerfing, Flexible Panels, Relief Cuts
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ijac201715106
id ijac201715106
authors Cardoso Llach, Daniel; Ardavan Bidgoli and Shokofeh Darbari
year 2017
title Assisted automation: Three learning experiences in architectural robotics
source International Journal of Architectural Computing vol. 15 - no. 1, 87-102
summary Fueled by long-standing dreams of both material efficiency and aesthetic liberation, robots have become part of mainstream architectural discourses, raising the question: How may we nurture an ethos of visual, tactile, and spatial exploration in technologies that epitomize the legacies of industrial automation—for example, the pursuit of managerial efficiency, control, and an ever-finer subdivision of labor? Reviewing and extending a growing body of research on architectural robotics pedagogy, and bridging a constructionist tradition of design education with recent studies of science and technology, this article offers both a conceptual framework and concrete strategies to incorporate robots into architectural design education in ways that foster a spirit of exploration and discovery, which is key to learning creative design. Through reflective accounts of three learning experiences, we introduce the notions “assisted automation” and “robotic embodiment” as devices to enrich current approaches to robot–human design, highlighting situated and embodied aspects of designing with robotic machines.
keywords Design education, architectural robotics, computational design, robot–human collaboration, studies of science and technology
series other
type normal paper
email
last changed 2019/08/02 08:28

_id cf2017_457
id cf2017_457
authors Erdine, Elif; Kallegias, Alexandros; Lara Moreira, Angel Fernando; Devadass, Pradeep; Sungur, Alican
year 2017
title Robot-Aided Fabrication of Interwoven Reinforced Concrete Structures
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 457.
summary This paper focuses on the realization of three-dimensionally interwoven concrete structures and their design process. The output is part of an ongoing research in developing an innovative strategy for the use of robotics in construction. The robotic fabrication techniques described in this paper are coupled with the computational methods dealing with geometry rationalization and material constraints among others. By revisiting the traditional bar bending techniques, this research aims to develop a novel approach by the reduction of mechanical parts for retaining control over the desired geometrical output. This is achieved by devising a robotic tool-path, developed in KUKA|prc with Python scripting, where fundamental material properties, including tolerances and spring-back values, are integrated in the bending motion methods via a series of mathematical calculations in accord with physical tests. This research serves to demonstrate that robotic integration while efficient in manufacturing it also retains valid alignment with the architectural design sensibility.
keywords Robotic fabrication, Robotic bar bending, Concrete composite, Geometry optimization, Polypropylene formwork
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ecaade2017_042
id ecaade2017_042
authors Hitchings, Katie, Patel, Yusef and McPherson, Peter
year 2017
title Analogue Automation - The Gateway Pavilion for Headland Sculpture on the Gulf
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 347-354
doi https://doi.org/10.52842/conf.ecaade.2017.2.347
summary The Waiheke Gateway Pavilion, designed by Stevens Lawson Architects originally for the 2010 New Zealand Venice Biennale Pavilion, was brought to fruition for the 2017 Headland Sculpture on the Gulf Sculpture trail by students from Unitec Institute of Technology. The cross disciplinary team comprised of students from architecture and construction disciplines working in conjunction with a team of industry professionals including architects, engineers, construction managers, project managers, and lecturers to bring the designed structure, an irregular spiral shape, to completion. The structure is made up of 261 unique glulam beams, to be digitally cut using computer numerical control (CNC) process. However, due to a malfunction with the institutions in-house CNC machine, an alternative hand-cut workflow approach had to be pursued requiring integration of both digital and analogue construction methods. The digitally encoded data was extracted and transferred into shop drawings and assembly diagrams for the fabrication and construction stages of design. Accessibility to the original 3D modelling software was always needed during the construction stages to provide clarity to the copious amounts of information that was transferred into print paper form. Although this design to fabrication project was challenging, the outcome was received as a triumph amongst the architecture community.
keywords Digital fabrication; workflow; rapid prototyping; representation; pedagogy
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2017_210
id ecaade2017_210
authors Jimenez Garcia, Manuel, Soler, Vicente and Retsin, Gilles
year 2017
title Robotic Spatial Printing
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 143-150
doi https://doi.org/10.52842/conf.ecaade.2017.2.143
summary There has been significant research into large-scale 3D printing processes with industrial robots. These were initially used to extrude in a layered manner. In recent years, research has aimed to make use of six degrees of freedom instead of three. These so called "spatial extrusion" methods are based on a toolhead, mounted on a robot arm, that extrudes a material along a non horizontal spatial vector. This method is more time efficient but up to now has suffered from a number of limiting geometrical and structural constraints. This limited the formal possibilities to highly repetitive truss-like patterns. This paper presents a generalised approach to spatial extrusion based on the notion of discreteness. It explores how discrete computational design methods offer increased control over the organisation of toolpaths, without compromising design intent while maintaining structural integrity. The research argues that, compared to continuous methods, discrete methods are easier to prototype, compute and manufacture. A discrete approach to spatial printing uses a single toolpath fragment as basic unit for computation. This paper will describe a method based on a voxel space. The voxel contains geometrical information, toolpath fragments, that is subsequently assembled into a continuous, kilometers long path. The path can be designed in response to different criteria, such as structural performance, material behaviour or aesthetics. This approach is similar to the design of meta-materials - synthetic composite materials with a programmed performance that is not found in natural materials. Formal differentiation and structural performance is achieved, not through continuous variation, but through the recombination of discrete toolpath fragments. Combining voxel-based modelling with notions of meta-materials and discrete design opens this domain to large-scale 3D printing. Please write your abstract here by clicking this paragraph.
keywords discrete; architecture; robotic fabrication; large scale printing; software; plastic extrusion
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2017_309
id ecaade2017_309
authors Lo Turco, Massimiliano, Zich, Ursula, Astolfi, Arianna, Shtrepi, Louena and Botto Poaola, Matteo
year 2017
title From digital design to physical model - Origami techniques applied to dynamic paneling shapes for acoustic performance control
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 77-86
doi https://doi.org/10.52842/conf.ecaade.2017.2.077
summary The recent trend toward non-standard and free form architecture has generated a lot of debate among the Scientific Community. The reasons can be found in the renewed interest in organic shapes, in addition to recent and powerful capabilities of parametric platforms. In this regard, the Visual Programming Language (VPL) interface gives a high level of freedom and control for conceiving complex shapes. The geometric problems in identifying a suitable shape have been addressed by relying on the study of Origami. The control of variable geometry has required the use of algorithmic models that ensure fast changes and free control of the model, besides a physical one made of rigid cardboard to simulate its rigid-foldability. The aim is to present a prototype of an adaptive structure, with an acoustic application, to control sound quality and perception in spaces where this has a central role, such as theatres or concert halls.
keywords parametric modeling; generative design; shape and form studies; acoustics conditions; digital Representation
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia17_534
id acadia17_534
authors Savov, Anton; Tessmann, Oliver
year 2017
title Introduction to Playable Voxel-Shape Grammars
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 534- 543
doi https://doi.org/10.52842/conf.acadia.2017.534
summary A shape grammar is a collection of visually defined geometric rules that could be used to automate the generation of formal representations of designs for buildings, cities, products and more. We offer an extension of the shape grammar formalism based entirely on voxel space instead of vectors, which we used for the generation of schematic architectural designs. We describe a method using playability to increase human agency and designer control over the outcome of the generative phase of voxel-shape grammars. The method is presented with an implementation in the environment of Minecraft and employs three guidance mechanisms. To conclude we list a few considerations from our experience in the design of a playable, voxel-shape grammar and point to future work.
keywords design methods; information processing; game engines; generative system; crowdsourcing
series ACADIA
email
last changed 2022/06/07 07:57

_id ecaade2017_252
id ecaade2017_252
authors Sharif, Shani, Agrawal, Varun and Sweet, Larry
year 2017
title Adaptive Industrial Robot Control for Designers
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 151-158
doi https://doi.org/10.52842/conf.ecaade.2017.2.151
summary In this research, we present a system to allow designers to adaptively control an industrial robot from within a 3D modeling environment, for the purpose of real time feedback with respect to visual imagery of the object as well as robot pose during the fabrication process. Our work uses the Kuka industrial robots due to their capability in fabrication and programmability, and the Rhino 3D modeling software with the Grasshopper plugin which allows for visual programming for designers. A Microsoft Kinect sensor is used to provide visual feedback of the part during the fabrication process. We present the methodology used to develop the system, explaining various design and architecture choices made to allow for easy use of our system, while ensuring our system is open to further extension. We also show qualitative results of the fabrication process performed using our system in order to validate that our proposed system improves the interaction and collaboration between designer and robot when performing the task, in contrast to the iterative process that is generally followed.
keywords Human-robot collaboration; Robotic fabrication; Adaptive control; Feedback
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2017_071
id ecaade2017_071
authors Stouffs, Rudi and Hou, Dan
year 2017
title The complexity of formulating design(ing) grammars
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 401-410
doi https://doi.org/10.52842/conf.ecaade.2017.1.401
summary We are concerned with the complexity of formulating rules within a design grammar, i.e., a grammar for designing. Our motivation comes from an active development of a design grammar using railway station design as a demonstration study. In this paper, we identify a number of difficulties that may arise when developing shape rules and present approaches for graphical rule specification that can serve to overcome these difficulties. Specifically, we present examples where drawing shape rules and augmenting these with control conditions or rule constraints offer insufficient support for the rules' intricacies, and propose conventions for drawing and specification that support the explication of these exemplar shape rules, aiming not to overly complicate the drawing and specification process. We borrow from other authors where appropriate, and do not concern ourselves with implementation issues, at this point.
keywords Design grammar; shape grammar; shape rule; graphical depiction
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia17_392
id acadia17_392
authors Mesa, Olga; Stavric, Milena; Mhatre, Saurabh; Grinham, Jonathan; Norman, Sarah; Sayegh, Allen; Bechthold, Martin
year 2017
title Non-Linear Matters: Auxetic Surfaces
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 392- 403
doi https://doi.org/10.52842/conf.acadia.2017.392
summary Auxetic structures exhibiting non-linear buckling are a prevalent research topic in the material sciences due to the ability to tune their reversible actuation, porosity, and negative Poisson’s ratio. However, the research is limited to feature sizes at scales below 10 mm2, and to date, there are no available efficient design and prototyping methods for architectural designers. Our study develops design principles and workflow methods to transform standard materials into auxetic surfaces at an architectural scale. The auxetic behavior is accomplished through buckling and hinging by subtracting from a homogeneous material to create perforated patterns. The form of the perforations, including shape, scale, and spacing, determines the behavior of multiple compliant "hinges" generating novel patterns that include scaling and tweening transformations. An analytical method was introduced to generate hinge designs in four-fold symmetric structures that approximate non-linear buckling. The digital workflow integrates a parametric geometry model with non-linear finite element analysis (FEA) and physical prototypes to rapidly and accurately design and fabricate auxetic materials. A robotic 6-axis waterjet allowed for rapid production while maintaining needed tolerances. Fabrication methods allowed for spatially complex shaping, thus broadening the design scope of transformative auxetic material systems by including graphical and topographical biases. The work culminated in a large-scale fully actuated and digitally controlled installation. It was comprised of auxetic surfaces that displayed different degrees of porosity, contracting and expanding while actuated electromechanically. The results provide a promising application for the rapid design of non-linear auxetic materials at scales complimentary to architectural products.
keywords material and construction; CAM; prototyping; smart materials; auxetic
series ACADIA
email
last changed 2022/06/07 07:58

_id ecaade2017_124
id ecaade2017_124
authors Pantazis, Evangelos and Gerber, David
year 2017
title Emergent order through swarm fluctuations - A framework for exploring self-organizing structures using swarm robotics
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 75-84
doi https://doi.org/10.52842/conf.ecaade.2017.1.075
summary In modern architecture, construction processes are based on top down planning, yet in nature but also in vernacular architecture, the shape of shelters/nests is the result of evolutionary material processes which takes place without any global coordination or plan. This work presents a framework for exploring how self-organizing structures can be achieved in a bottom up fashion by implementing a swarm of simple robots(bristle bots). The robots are used as a hardware platform and operate in a modular 2D arena filled with differently shaped passive building blocks. The robots push around blocks and their behaviour can be programmed mechanically by changing the geometry of their body. Through physical experimentation and video analysis the relationships between the properties of the emergent patterns (size, temporal stability) and the geometry of the robot/parts are studied. This work couples a set of agent based design tools with a robust robotic system and a set of analysis tools for generating and actualising emergent 2D structures.
keywords Multi Agent Systems; Generative Design; Swarm Robotics; Self-organizing patterns
series eCAADe
email
last changed 2022/06/07 08:00

_id acadia17_522
id acadia17_522
authors Sarafian, Joseph; Culver, Ronald; Lewis, Trevor S.
year 2017
title Robotic Formwork in the MARS Pavilion: Towards The Creation Of Programmable Matter
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 522- 533
doi https://doi.org/10.52842/conf.acadia.2017.522
summary The proliferation of parametric tools has allowed for the design of previously impossible geometry, but the construction industry has failed to keep pace. We demonstrate the use of industrial robots to disrupt the ancient process of casting concrete and create an adjustable formwork capable of generating various cast components based on digital input, crafting a new approach to “programmable matter.” The resulting research delineates a novel methodology to facilitate otherwise cost-prohibitive, even impossible design. The MARS Pavilion employs this methodology in a building-sized proof of concept where manipulating fabric with industrial robots achieves previously unattainable precision while casting numerous connective concrete components to form a demountable lattice structure. The pavilion is the result of parametric form finding, in which a catenary structure ensures that the loads are acting primarily in compression. Every concrete component is unique, yet can be assembled together with a 1/16-inch tolerance. Expanding Culver & Sarafian’s previous investigations, industrial robot arms are sent coordinates to position fabric sleeves into which concrete is poured, facilitating a rapid digital-to-physical casting process. With this fabrication method, parametric variation in design is cost-competitive relative to other iterative casting techniques. This digital breakthrough necessitated analogue material studies of rapid-setting, high-strength concrete and flexible, integral reinforcing systems. The uniquely shaped components are coupled with uniform connectors designed to attach three limbs of concrete, forming a highly stable, compressive hex-grid shell structure. A finite element analysis (FEA) was a critical step in the structural engineering process to simulate various load scenarios on the pavilion and drive the shape of the connective elements to their optimal form.
keywords material and construction; fabrication; form finding
series ACADIA
email
last changed 2022/06/07 07:57

_id caadria2017_005
id caadria2017_005
authors Xia, Tian, Koh, Jing Lin, Chen, Yutong, Goh, Yi Qian and Dritsas, Stylianos
year 2017
title Form-finding with Robotics - Fusing Physical Simulation and Digital Fabrication
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 893-902
doi https://doi.org/10.52842/conf.caadria.2017.893
summary We present an experimental digital design and fabrication process investigating the integration of form-finding and industrial robotics. The design process is inspired by classical experiments producing minimal surfaces and tensile structures via physical simulation. The fabrication process resembles thermoforming whereby sheets of PET material are heat treated and while in a malleable state, where the material behaves like stretchable fabric, an industrial articulated robotic arm impresses a form while the sheet is air cooled and its final shape becomes stable and rigid. The three-dimensional plastic sheets are used as molds for glass-reinforced concrete casting. The key aspects of our approach include: (a) Mold-less fabrication: the design of our robotic end-effector can produce a range of free-form geometries without need for complex mold making (b) Reusable and durable artifacts: unlike traditional physical form-finding processes where the derived form is often ephemeral or fragile our process affords the detachment of a rigid artifacts which can be digitized, used as-is or employed in (c) Multi-stage fabrication: as the form-found geometry can be directly used for processes such as casting with excellent results in terms of surface finish. We present the design and development of our system and its deployment for an installation artwork.
keywords Form-Finding; Digital Fabrication; Architectural Robotics
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2017_142
id caadria2017_142
authors Kaijima, Sawako, Tan, Ying Yi and Lee, Tat Lin
year 2017
title Functionally Graded Architectural Detailing using Multi-Material Additive Manufacturing
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 427-436
doi https://doi.org/10.52842/conf.caadria.2017.427
summary The paper presents a future architectural detailing strategy enabled by the design of functionally graded materials (FGM). In specific, our proposal suggests the possibility of removing mechanical fasteners and adhesives from joint details. This is achieved by combining the principles of interlocking joineries found in traditional timber structures and current Multi-Material Additive Manufacturing (MMAM) technology to materialise FGMs. FGM belongs to a class of advanced materials characterised by variation in properties as the dimension varies by combining two or more materials at a microscopic scale (Mahamood et al. 2012). FGM is ubiquitous in nature and, when properly designed, can exhibit superior performance characteristics compared to objects comprised of homogeneous material properties. With the aim of developing interlocking details with improved performance, reliability, and design flexibility, we focus on controlling material stiffness, joint fitting, and geometry through the design of the microscopic material layout. A case study design will be presented to illustrate the process.
keywords Functionality Graded Material; Multi-Material Additive Manufacturing ; Architectural Detailing; Interlocking Joints
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia17_544
id acadia17_544
authors Schleicher, Simon; La Magna, Riccardo; Zabel, Joshua
year 2017
title Bending-active Sandwich Shells: Studio One Research Pavilion 2017
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 544- 551
doi https://doi.org/10.52842/conf.acadia.2017.544
summary The goal of this paper is to advance the research on bending-active structures by investigating the system’s inherent structural characteristics and introducing an alternative approach to their design and fabrication. With this project, the authors propose the use of sandwich-structured composites to improve the load-bearing behavior of bending-active shells. By combining digital form-finding and form-conversion processes, it becomes possible to discretize a double-curved shell geometry into an assembly of single-curved sandwich strips. Due to the clever use of bending in the construction process, these strips can be made out of inexpensive and flat sheet materials. The assembly itself takes advantage of two fundamentally different structural states. When handled individually, the thin panels are characterized by their high flexibility, yet when cross-connected to a sandwich, they gain bending stiffness and increase the structure’s rigidity. To explain the possible impacts of this approach, the paper will discuss the advantages and disadvantages of bending-active structures in general and outline the potential of sandwich shells in particular. Furthermore, the authors will address the fundamental question of how to build a load-bearing system from flexible parts by using the practical example of the Studio One Research Pavilion. To illustrate this project in more detail, the authors will present the digital design process involved as well as demonstrate the technical feasibility of this approach through a built prototype in full scale. Finally, the authors will conclude with a critical discussion of the design approach proposed here and point out interesting topics for future research.
keywords material and construction
series ACADIA
email
last changed 2022/06/07 07:57

_id ecaade2017_027
id ecaade2017_027
authors Carl, Timo, Schein, Markus and Stepper, Frank
year 2017
title Sun Shades - About Designing Adaptable Solar Facades
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 165-174
doi https://doi.org/10.52842/conf.ecaade.2017.2.165
summary External shading structures are a well-established typology for reducing solar heat loads. A major disadvantage is their inflexible nature, blocking views from inside and desired solar radiation for seasons with less sunshine hours. An adaptive approach on the other end can accommodate dynamic environmental exchange and user control. Furthermore, kinetic movement has great potential to create expressive spatial structures. However, such typologies are inherently complex. This paper presents the design process for two novel adaptive façade typologies, conducted on an experimental level in an educational context. Moreover, we will discuss the conception of a suitable methodological framework, which we applied to engage the complexity of this design task. Thereby we will highlight the importance of employing various methods, combining analogue and computational models not in a linear sequence, but rather in an overlapping, iterative way to create an innovation friendly design setting. The Sun Shades project offers insight into the relationships between design potentials inherent in adaptable structures and the advantages and limitation of computational methods employed to tackle them.
keywords computational design methodology; performance-based design; associative geometry modelling; solar simulation; physical form-finding; design theory
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2017_244
id ecaade2017_244
authors Chaltiel, Stephanie, Bravo, Maite and Chronis, Angelos
year 2017
title Digital fabrication with Virtual and Augmented Reality for Monolithic Shells
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 211-218
doi https://doi.org/10.52842/conf.ecaade.2017.2.211
summary The digital fabrication of monolithic shell structures is presenting some challenges related to the interface between computational design and fabrication techniques, such as the methods chosen for the suitable parametrization of the geometry based on materiality characteristics and construction constrains, the digital optimization criteria of variables, and the translation of the relevant code used for digital fabrication. Specifically, the translation from the digital to the physical when a definite materiality appears during the digital fabrication process proves to be a crucial step, which is typically approached as a linear and predetermined sequence. This often-difficult step offers the potential of embedding a certain level of interactivity between the fabricator and the materialized model during the fabrication process in order to allow for real time adjustments or corrections. This paper features monolithic shell construction processes that promote a simple interface of live interaction between the fabricator and the tool control during the digital fabrication process. The implementation of novel digital and physical methods will be explored, offering the possibility of being combined with automated fabrication actions controlled by real time inputs with virtual reality [VR] influenced by 3d scanning and 3d CAD programs, and the possibility of incorporating augmented reality [AR].
keywords virtual reality; augmented reality; monolithic shells
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_397
id ecaadesigradi2019_397
authors Cristie, Verina and Joyce, Sam Conrad
year 2019
title 'GHShot': a collaborative and distributed visual version control for Grasshopper parametric programming
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 35-44
doi https://doi.org/10.52842/conf.ecaade.2019.3.035
summary When working with parametric models, architects typically focus on using rather structuring them (Woodbury, 2010). As a result, increasing design complexity typically means a convoluted parametric model, amplifying known problems: 'hard to understand, modify, share and reuse' (Smith 2007; Davis 2011). This practice is in contrast with conventional software-programming where programmers are known to meticulously document and structure their code with versioning tool. In this paper, we argue that versioning tools could help to manage parametric modelling complexity, as it has been showing with software counterparts. Four key features of version control: committing, differentiating, branching, and merging, and how they could be implemented in a parametric design practice are discussed. Initial user test sessions with 5 student designers using GHShot Grasshopper version control plugin (Cristie and Joyce 2018, 2017) revealed that the plugin is useful to record and overview design progression, share model, and provide a fallback mechanism.
keywords Version Control; Parametric Design; Collaborative Design; Design Exploration
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_178100 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002