CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 576

_id acadia17_360
id acadia17_360
authors L'Huillier, Nicole; Machover, Tod
year 2017
title Spaces That Perform Themselves: Multisensory Kinetic Environment for Sonic-Spatial Composition
doi https://doi.org/10.52842/conf.acadia.2017.360
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 360- 365
summary Building on the understanding of music and architecture as creators of spatial experience, this paper presents a novel way of unfolding music’s spatial qualities in the physical world. Spaces That Perform Themselves arose as an innovative response to the current relationship between sound and space, where we build static spaces to contain dynamic sounds. What if we change the static parameter of spaces and start building dynamic spaces to contain dynamic sounds? This project combines architectural theories with musical mastery and computation to create an environment as kinetically undulant and emotionally varied as music itself. To achieve this, a multisensory kinetic room is built in order to augment our sonic perception through a cross-modal spatial choreography that combines sound, spatial movement, light, color and vibration. By breaking down boundaries between disciplines, the possibilities of a new type of architectural typology that morphs responsively with a musical piece can be explored. As a result, spatial and musical composition can exist as one synchronous entity. Spaces That Perform Themselves seeks to contribute a novel perspective to the discourse on leveraging today’s technology to provide a setting to enrich and augment the way we relate with the built environment. This project’s objective is to enhance our perception and challenge models of thinking by presenting a post-humanistic phenomenological encounter of the world.
keywords design methods; information processing; education; art and technology; hybrid practices; computational / artistic cultures
series ACADIA
email
last changed 2022/06/07 07:52

_id sigradi2021_189
id sigradi2021_189
authors Paiva Ponzio, Angelica, Giudoux Gonzaga, Mario, Pires de Castro Aguiar Vale, Marina, Bruscato, Underléa Miotto and Mog, William
year 2021
title Parametric Design Learning Strategies in the Context of Architectural Design Remote Teaching
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1077–1088
summary This article aims to demonstrate how a theoretical-didactic model and its respective teaching strategies for algorithmic-parametric logic can act as potential elements of innovation in the architectural design process. Based on the theories of parametric design thinking by Oxman (2017) and the studies by Woodbury (2010) and Romcy (2017), such strategies are based on the principle that algorithmic logic can be understood, in certain circumstances, as a procedural framework and not just an instrumental one. It will also be discussed how the situation of remote learning in the face of the COVID-19 crisis brought about the use of virtual teaching tools as an increment of the learning process.
keywords Architectural teaching, computational design, parametric design thinking, design process, algorithmic design
series SIGraDi
email
last changed 2022/05/23 12:11

_id ecaade2018_325
id ecaade2018_325
authors Peteinarelis, Alexandros and Yiannoudes, Socrates
year 2018
title Parametric Models and Algorithmic Thinking in Architectural Education
doi https://doi.org/10.52842/conf.ecaade.2018.2.401
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 401-410
summary Part of our research and teaching agenda at the School of Architecture of the Technical University of Crete focuses on algorithmic design with parametric models, its methodological characteristics and the study of applied and theoretical work that defined this architectural design thinking. Our work challenges architectural design processes, through the systematic study of parametric models. This paper presents three projects from the undergraduate elective course "Special Topics in Architectural Design", which took place during the spring semester of 2017, that investigated parametric models for a given architectural problem, inspired, to some extent, by precedents in 20th century architecture where students traced algorithmic design thinking. Although students understood well the concept and function of parametric models and in many cases applied them successfully for their design objectives, several of them did not fully assimilate some critical aspects of computation. This allowed us to determine areas of improvement and points of complete reevaluation in our educational strategy approach.
keywords algorithmic thinking; parametric model; computational thinking; architectural education; Frei Otto
series eCAADe
email
last changed 2022/06/07 08:00

_id cf2017_249
id cf2017_249
authors Agirbas, Asli
year 2017
title Teaching Design by Coding in Architecture Undergraduate Education: A Case Study with Islamic Patterns
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 249-258.
summary Computer-aided design has found its role in the undergraduate education of architects, and presently design by coding is also gradually finding further prominence in accord with the increasing demand by students who wish to learn more about this topic. This subject is included in an integrated manner in some studio courses on architecture design in some schools, or it is taught separately in elsewhere. In terms of the separate course on coding, the principal difficulty is that actual applications of the method can rarely be included due to time limitations and the fact that it is conducted separately from the studio course on architecture. However, within the framework of the architectural education, in order to learn about the coding it is necessary to consider it along with the design process, and this versatile thinking can only be achieved by the application of the design. In this study, an elective undergraduate course is considered in the context of design and to yield a versatile thinking strategy while learning the language of visual programming. The course progressed under the theoretical framework of shape grammar from the design stage through to the digital fabrication process, and the experimental studies were carried out on the selected topic of Islamic pattern. A method was proposed to improve the productivity of such courses, and an evaluation of the results is presented.
keywords Islamic Patterns, Shape Grammars, Architectural Education, Parametric Design, CAAD.
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ecaade2017_032
id ecaade2017_032
authors Kepczynska-Walczak, Anetta
year 2017
title Computation As Design Logic Indicator - The Expo Project Experiment
doi https://doi.org/10.52842/conf.ecaade.2017.1.279
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 279-288
summary The city of Lodz is bidding for hosting International EXPO in 2022. The proposed theme is "City Re:Invented". The paper presents the EXPO project experiment conducted at Lodz University of Technology in cooperation with Lodz City Council. The idea was to prepare design proposals for promotional purposes, first in the form of computer visualisations, then as physical scale mock-ups produced in a digital fabrication laboratory. It is planned that the best solutions would be adopted and built in 1:1 scale if Lodz received a nomination. The results of the project are illustrated in the paper by selected examples. The main aim of this study is to examine computational thinking as a design medium. The paper presents background studies in this regard. It also looks into the approach to articulate digital fabrication and robotics as not merely the methods of delivery of a final product but their role in a design process. It deliberates pros and cons of computational design and its influence on creativity. It concludes with a statement that computation may help to construct, reveal, enhance and develop logic in a creation process.
keywords computational design; parametric modelling; digital fabrication; creativity; EXPO
series eCAADe
email
last changed 2022/06/07 07:52

_id sigradi2017_076
id sigradi2017_076
authors Neto de Faria, José; Mirtes Marins Oliveira
year 2017
title Design da Informação e Resiliência: Estudo dos níveis de correlação entre o indivíduo, o sistema de informação e o fenômeno representado. [Information Design and Resilience: A study of correlation levels between subject, “information system” and represented phenomena.]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.519-527
summary This article search to describe how correlation levels between subject, information system and represented phenomena define representational models which may be used to enhance phenomena understanding, with aid of resilience representational models. The main work aim is to identify how representational models can be used to enhance resilience behaviour of information systems. Only dynamic information systems seems to show fair resilient behaviour, especially when they approach cognitive process reproduction realized by subject. Resilience in “information systems” emulate thinking object and thinking process.
keywords Information Design; Resilience; Subject; Information System; Phenomena.
series SIGRADI
email
last changed 2021/03/28 19:59

_id caadria2017_189
id caadria2017_189
authors Reinhardt, Dagmar and Cabrera, Densil
year 2017
title Randomness in Robotically Fabricated Micro-Acoustic Patterns
doi https://doi.org/10.52842/conf.caadria.2017.853
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 853-862
summary Randomness can introduce degrees of variation as part of a highly controlled design process, which can be of particular significance in the context of acoustic performance in architecture. This paper presents research into robotic fabrication of surfaces with acoustic micro-patterns that can change the acoustic response of space. It explores the design affordances for acoustically efficient 1:10 scale model prototypes, from parametric modeling to scale model production to physical evaluation. Acoustic reflective properties of surface patterns are investigated for scattering coefficients, in order to derive statistical data on acoustic properties of these surfaces, and to deduce design rules. The robotic subtractive process particularly invests variations and disturbances to originally coded fabrication sequences that lead to different pattern outcomes. Changes to protocols and workflows change the equations of design through shuffling of multiple criteria: from multiple sequences in a production process to intuitive impacts of the designer on a preset tooling and workpath; from computational design code to acoustic effect.
keywords robotic subtractive manufacturing; micro-acoustic patterns; sound scattering; design thinking
series CAADRIA
email
last changed 2022/06/07 08:00

_id sigradi2017_000
id sigradi2017_000
authors Roco Ibaceta, Miguel
year 2017
title Resilience Design
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017
summary The chosen theme, Resilience Design, evidences the researchers’ concern about issues related to our reality of climate change and natural disasters, associated with the states of vulnerability and risk, having wide effects on society and the way we inhabit territories. These matters are fundamental and highly relevant for the disciplines and in the fields of design and architecture, as they are also important for collaborative work with areas emerging from the arts and human sciences. Thinking about Resilience Design is to set ourselves on new scenarios of reflection and action which, supported by transdisciplinary thinking and collaborative design, allow us to develop a new approach towards our territories and their demands, one that is more contextualized and adjusted to their current and future requirements, a starting point to establish the key elements to drive change in our cities and society. In this sense, technology and digital development, parametric design, the use of Information and Communication Technologies (ICT) and Geographic Information Systems (GIS), in addition to work done with Building Information Modelling (BIM), among many others, have been delivering an enormous amount of tools and possibilities of interaction with living in society, leading to a substantive change in the way of understanding and relating to the built environment and the territories where buildings are sit. This demands a strong commitment to Social Responsibility from our disciplines, besides the necessary landing of cutting-edge technological and digital research and development onto our diverse realities, in order for them to be put at the service of communities in vulnerable environments or with a marked condition of risk, which are subject to constant processes of resilience. Working on Resilience Design allows to support research and productive processes, plus the appearance of new technologies in interdisciplinary contexts, which greatest value is to impact the processes of teaching and professional practice in the different areas related to human habitation. The new professionals will have to take action and immerse themselves into these new scenarios of change and constant adjustment.
series SIGRADI
email
last changed 2021/03/28 19:59

_id acadia17_308
id acadia17_308
authors Joyce, Sam Conrad; Ibrahim, Nazim
year 2017
title Exploring the Evolution of Meta Parametric Models
doi https://doi.org/10.52842/conf.acadia.2017.308
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 308- 317
summary Parametric associative logic can describe complex design scenarios but are typically non-trivial and time consuming to develop. Optimization is being widely applied in many fields to find high-performing solutions to objective design needs, and this is being extended further to include user input to satisfy subjective preferences. However, whilst conventional optimization approaches can set good parameters for a model, they cannot currently improve the underlying logic defined by the associative topology of the model, leaving it limited to predefined domain of designs. This work looks at the application of Cartesian Genetic Programming (CGP) as a method for allowing the automatic generation, combination and modification of valid parametric models, including topology. This has value as it allows for a much greater range of solutions, and potentially computational "creativity," as it can develop unique and surprising solutions. However, the application of a genome-based definition and evolutionary optimization, respectively, to describe parametric models and develop better models for a problem, introduce many unknowns into the model generation process. This paper explains CGP as applied to parametric design and investigates the difference between using mating, mutating and both strategies together as a way of combining aspects of parent models, under selection by a genetic algorithm under random, objective and user (Interactive GA) preferences. We look into how this effects the resultant overiterated interaction in relation to both the geometry and the parametric model.
keywords design methods; information processing; generative system; data visualization; computational / artistic cultures
series ACADIA
email
last changed 2022/06/07 07:52

_id ecaade2017_021
id ecaade2017_021
authors Agirbas, Asli
year 2017
title The Use of Simulation for Creating Folding Structures - A Teaching Model
doi https://doi.org/10.52842/conf.ecaade.2017.1.325
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 325-332
summary In architectural education, the demand for creating forms with a non-Euclidean geometry, which can only be achieved by using the computer-aided design tools, is increasing. The teaching of this subject is a great challenge for both students and instructors, because of the intensive nature of architecture undergraduate programs. Therefore, for the creation of those forms with a non-Euclidean geometry, experimental work was carried out in an elective course based on the learning visual programming language. The creation of folding structures with form-finding by simulation was chosen as the subject of the design production which would be done as part of the content of the course. In this particular course, it was intended that all stages should be experienced, from the modeling in the virtual environment to the digital fabrication. Hence, in their early years of architectural education, the students were able to learn versatile thinking by experiencing, simultaneously, the use of simulation in the environment of visual programming language, the forming space by using folding structures, the material-based thinking and the creation of their designs suitable to the digital fabrication.
keywords Folding Structures; CAAD; Simulation; Form-finding; Architectural Education
series eCAADe
email
last changed 2022/06/07 07:54

_id ijac201715402
id ijac201715402
authors Alaçam, Sema; Orkan Zeynel Güzelci, Ethem Gürer and Saadet Zeynep Bac?noglu
year 2017
title Reconnoitring computational potentials of the vault-like forms: Thinking aloud on muqarnas tectonics
source International Journal of Architectural Computing vol. 15 - no. 4, 285-303
summary This study sheds light on a holistic understanding of muqarnas with its historical, philosophical and conceptual backgrounds on one hand and formal, structural and algorithmic principles on the other hand. The vault-like Islamic architectural element, muqarnas, is generally considered to be a non-structural decorative element. Various compositional approaches have been proposed to reveal the inner logic of these complex geometric elements. Each of these approaches uses different techniques such as measuring, unit-based decoding or three-dimensional interpretation of two-dimensional patterns. However, the reflections of the inner logic onto different contexts, such as the usage of different initial geometries, materials or performative concerns, were neglected. In this study, we offer a new schema to approach the performative aspects of muqarnas tectonics. This schema contains new sets of elements, properties and relations deriving partly from previous approaches and partly from the technique of folding. Thus, this study first reviews the previous approaches to analyse the geometric and constructional principles of muqarnas. Second, it explains the proposed scheme through a series of algorithmic form-finding experiments. In these experiments, we question whether ‘fold’, as one of the performative techniques of making three-dimensional forms, contributes to the analysis of muqarnas in both a conceptual and computational sense. We argue that encoding vault-like systems via geometric and algorithmic relations based on the logic of the ‘fold’ provides informative and intuitive feedback for form-finding, specifically in the earlier phases of design. While focusing on the performative potential of a specific fold operation, we introduced the concept of bifurcation to describe the generative characteristics of folding technique and the way of subdividing the form with respect to redistribution of the forces. Thus, in this decoding process, the bifurcated fold explains not only to demystify the formal logic of muqarnas but also to generate new forms without losing contextual conditions.
keywords Muqarnas, vault, layering, folding, force flow, bifurcation
series journal
email
last changed 2019/08/07 14:03

_id ecaade2017_001
id ecaade2017_001
authors Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.)
year 2017
title ShoCK! – Sharing of Computable Knowledge!, Volume 2
doi https://doi.org/10.52842/conf.ecaade.2017.2
source ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, 760 p.
summary Internet of Things, pervasive nets, Knowledge ‘on tap’, Big Data, Wearable devices and the ‘Third wave’ of AI are disruptive technologies that are upsetting our globalised world as far as it can be foreseen from now. So academicians, professionals, researchers, innovation factories... are warmly invited to further shake up and boost our innovative and beloved CAAD world with new ideas, paradigms and points of view. Will our fine buildings and design traditions survive? Or, will they ‘simply’ be hybridized and enhanced by methods, techniques and CAAD tools? Obviously computation is needed to match the evergrowing performance requirements, but this is not enough to answer all these questions we have to deal with the essence of problems: improve design solutions for a better life. As life is not a matter of single individuals, we need to increase collaboration and to improve knowledge sharing. This means taking care of human beings, and involves a humanistic approach, and the long history of humankind ... from humans to thinking to technology ... and vice versa. A circle of human beings as eternal as our city.
series eCAADe
last changed 2022/06/07 07:49

_id ecaade2017_000
id ecaade2017_000
authors Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.)
year 2017
title ShoCK! – Sharing of Computable Knowledge!, Volume 1
doi https://doi.org/10.52842/conf.ecaade.2017.1
source ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, 770 p.
summary Internet of Things, pervasive nets, Knowledge ‘on tap’, Big Data, Wearable devices and the ‘Third wave’ of AI are disruptive technologies that are upsetting our globalised world as far as it can be foreseen from now. So academicians, professionals, researchers, innovation factories... are warmly invited to further shake up and boost our innovative and beloved CAAD world with new ideas, paradigms and points of view. Will our fine buildings and design traditions survive? Or, will they ‘simply’ be hybridized and enhanced by methods, techniques and CAAD tools? Obviously computation is needed to match the evergrowing performance requirements, but this is not enough to answer all these questions we have to deal with the essence of problems: improve design solutions for a better life. As life is not a matter of single individuals, we need to increase collaboration and to improve knowledge sharing. This means taking care of human beings, and involves a humanistic approach, and the long history of humankind ... from humans to thinking to technology ... and vice versa. A circle of human beings as eternal as our city.
series eCAADe
last changed 2022/06/07 07:49

_id ecaade2018_243
id ecaade2018_243
authors Gardner, Nicole
year 2018
title Architecture-Human-Machine (re)configurations - Examining computational design in practice
doi https://doi.org/10.52842/conf.ecaade.2018.2.139
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 139-148
summary This paper outlines a research project that explores the participation in, and perception of, advanced technologies in architectural professional practice through a sociotechnical lens and presents empirical research findings from an online survey distributed to employees in five large-scale architectural practices in Sydney, Australia. This argues that while the computational design paradigm might be well accepted, understood, and documented in academic research contexts, the extent and ways that computational design thinking and methods are put-into-practice has to date been less explored. In engineering and construction, technology adoption studies since the mid 1990s have measured information technology (IT) use (Howard et al. 1998; Samuelson and Björk 2013). In architecture, research has also focused on quantifying IT use (Cichocka 2017), as well as the examination of specific practices such as building information modelling (BIM) (Cardoso Llach 2017; Herr and Fischer 2017; Son et al. 2015). With the notable exceptions of Daniel Cardoso Llach (2015; 2017) and Yanni Loukissas (2012), few scholars have explored advanced technologies in architectural practice from a sociotechnical perspective. This paper argues that a sociotechnical lens can net valuable insights into advanced technology engagement to inform pedagogical approaches in architectural education as well as strategies for continuing professional development.
keywords Computational design; Sociotechnical system; Technology adoption
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2017_168
id caadria2017_168
authors Kalantar, Negar and Borhani, Alireza
year 2017
title Breathable Walls - Computational Thinking in Early Design Education
doi https://doi.org/10.52842/conf.caadria.2017.377
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 377-386
summary This research categorizes the different breathable wall systems designed by students and describes their potential. Also included is a discussion of the results of both the physical analyses and digital simulations of these students' designs. To optimize the environmental performance of each proposed system, this work also engages in a more specific discussion of the advantages and limitations of these designs. Finally, this research concludes with a summary of the evidence of the benefits and risks of employing simulation tools in architecture studios.
keywords Breathable Wall System; Computational Fluid Dynamics (CFD); Physical and Digital Wind Simulations; Architectural Prototype; Responsive Architecture
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia17_374
id acadia17_374
authors Manninger, Sandra; del Campo, Matias
year 2017
title Plato's Columns: Platonic Geometries vs. Vague Gestures in Robotic Construction
doi https://doi.org/10.52842/conf.acadia.2017.374
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 374- 381
summary This paper examines the inherent possibilities for architectural production in automated deposition modeling techniques, primarily explored through the use of industrial robots in combination with plastic deposition heads. These robots, in combination with various polymers, toolpaths and colorations, served as a design ecology for the exploration of emergent behaviors in robotic construction. The relationship between geometry (Euclidian, topological, fractal), mechanical properties of material (plasticity, elasticity, viscosity, resilience), optical properties (color, absorbance, transmittance, scattering), and the gestural qualities of robotic toolpaths constitute the palette adopted for the presented project. The project combines the rigor of a platonic body (Figure 2) with the emergent properties of vague gestures. The introduction of moments of uncertainty in the process produces glitches that are embraced as an opportunity to find novel aesthetic conditions. The profound entanglement with the post-digital realm is discussed as the discursive plane of thinking applied to the project.
keywords design methods; information processing fabrication; construction/robotics; form finding; computational / artistic cultures
series ACADIA
email
last changed 2022/06/07 07:59

_id ecaade2023_227
id ecaade2023_227
authors Moorhouse, Jon and Freeman, Tim
year 2023
title Towards a Genome for Zero Carbon Retrofit of UK Housing
doi https://doi.org/10.52842/conf.ecaade.2023.2.197
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 197–206
summary The United Kingdom has some of the worst insulated housing stock in Northern Europe. This is in part due to the age of housing in the UK, with over 90% being built before 1990 [McCrone 2017, Piddington 2020]. Moreover, 85% of current UK housing will still be in use in 2050 by which stage their Government are targeting Net Carbon Zero [Eyre 2019]. Domestic energy use accounts for around 25% of UK carbon emissions. The UK will need to retrofit 20 million dwellings in order to meet this target. If this delivery were evenly spread, it would equate to over 2,000 retrofit completions each day. Government-funded initiatives are stimulating the market, with upwards of 60,000 social housing retrofits planned for 2023, but it is clear that a system must be developed to enable the design and implementation of housing-stock improvement at a large scale.This paper charts the 20-year development of a digital approach to the design for low-carbon domestic retrofit by architects Constructive Thinking Studio Limited and thence documents the emergence of a collaborative approach to retrofit patterns on a National scale. The author has led the Research and Development stream of this practice, developing a Building Information Modelling methodology and integrated Energy Modelling techniques to optimise design for housing retrofit [Georgiadou 2019, Ben 2020], and then inform a growing palette of details and a database of validated solutions [Moorhouse 2013] that can grow and be used to predict options for future projects [D’Angelo 2022]. The data is augmented by monitoring energy and environmental performance, enabling a growing body of knowledge that can be aligned with existing big data to simulate the benefits of nationwide stock improvement. The paper outlines incremental case studies and collaborative methods pivotal in developing this work The proposed outcome of the work is a Retrofit Genome that is available at a national level.
keywords Retrofit, Housing, Zero-Carbon, BIM, Big Data, Design Genome
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2017_138
id ecaade2017_138
authors Nerla, Maria Giuditta, Erioli, Alessio and Garai, Massimo
year 2017
title Modulated corrugations by differential growth - Integrated FRP tectonics towards a new approach to sustainability, fusing architectural and energy design for a new students’ space
doi https://doi.org/10.52842/conf.ecaade.2017.2.593
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 593-602
summary This Master Thesis research investigates the concept of 'integrated tectonics' as a new way of thinking sustainability in architecture, intended as an ecology of different, integrated factors which take part in a seamless design-to-fabrication process. In particular, this new paradigm is applied to the design of a pavilion made of a fiber-reinforced (FRP) sandwich shell integrating multiple systems and performances. A differential growth algorithm mimicking cellular tissue development modulates performance across the surface through ornamental features in the form of corrugated patterns. Iterative feedback simulations allow the exploration of the mutual relations connecting morphogenesis and performance distribution patterns at the architectural scale. Problems connected to simulation inaccuracies and difficult software integration are discussed. A 1:2 scale prototype of a shell portion was fabricated to test material properties and production feasibility.
keywords Fiber-reinforced polymers (FRP); integrated tectonics; differential growth; composite materials; ecology; sustainability
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2017_232
id ecaade2017_232
authors Ostrowska-Wawryniuk, Karolina, Markusiewicz, Jacek and S³yk, Jan
year 2017
title Descriptive Geometry 2.0 - Define vs. design
doi https://doi.org/10.52842/conf.ecaade.2017.2.425
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 425-430
summary The article presents the 'Digital Geometry Techniques' course taught at the second year of the undergraduate course at the Faculty of Architecture in the Warsaw University of Technology - WUT. The course introduces mathematical theory and generative modeling in order to prepare the students to consciously plan their creative process and to choose the set of tools according to an initial analysis of modeling constraints. The students gain knowledge on advanced CAAD techniques through learning functions of a particular program, and also by tackling geometry-related problems derived from real-world architectural projects. They are able to develop individual solutions using adequate techniques. We present three different students' semester works as examples to reflect on the significance of mathematics and algorithmization in the process of problem solving and form creation in architecture and urban design.
keywords project based learning; generative design; architectural curriculum; conceptual thinking; geometry; programming
series eCAADe
email
last changed 2022/06/07 08:00

_id ecaade2017_308
id ecaade2017_308
authors Pellitteri, Giuseppe and Riccobono, Alessia
year 2017
title New digital trends in current architecture - A comprehensive critical examination
doi https://doi.org/10.52842/conf.ecaade.2017.1.251
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 251-260
summary The research presented is about digital revolution in architecture, which has contributed to the birth of new figurative trends. The work was conducted through the definition of a framework to identify and classify architectural design elements that should be attributed to the methods and techniques of design computing, then applied to sixty prominent recent architectures which are acknowledged products of digital means. The early results suggest that a new era is coming, where the conceptual starting point of designers is often born in the digital space, taking advantage of the augmented representation skills to control and manipulate form. We will also do an overview of these new architectural trends, discussing both causes and cultural roots and identifying eventual criticisms and further developments.
keywords digital design thinking; contemporary architecture; design process; digital trends
series eCAADe
email
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_863783 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002