CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 575

_id ecaade2017_244
id ecaade2017_244
authors Chaltiel, Stephanie, Bravo, Maite and Chronis, Angelos
year 2017
title Digital fabrication with Virtual and Augmented Reality for Monolithic Shells
doi https://doi.org/10.52842/conf.ecaade.2017.2.211
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 211-218
summary The digital fabrication of monolithic shell structures is presenting some challenges related to the interface between computational design and fabrication techniques, such as the methods chosen for the suitable parametrization of the geometry based on materiality characteristics and construction constrains, the digital optimization criteria of variables, and the translation of the relevant code used for digital fabrication. Specifically, the translation from the digital to the physical when a definite materiality appears during the digital fabrication process proves to be a crucial step, which is typically approached as a linear and predetermined sequence. This often-difficult step offers the potential of embedding a certain level of interactivity between the fabricator and the materialized model during the fabrication process in order to allow for real time adjustments or corrections. This paper features monolithic shell construction processes that promote a simple interface of live interaction between the fabricator and the tool control during the digital fabrication process. The implementation of novel digital and physical methods will be explored, offering the possibility of being combined with automated fabrication actions controlled by real time inputs with virtual reality [VR] influenced by 3d scanning and 3d CAD programs, and the possibility of incorporating augmented reality [AR].
keywords virtual reality; augmented reality; monolithic shells
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2018_333
id caadria2018_333
authors Cupkova, Dana, Byrne, Daragh and Cascaval, Dan
year 2018
title Sentient Concrete - Developing Embedded Thermal and Thermochromic Interactions for Architecture and Built Environment
doi https://doi.org/10.52842/conf.caadria.2018.2.545
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 545-554
summary Historically, architectural design focused on adaptation of built environment to serve human needs. Recently embedded computation and digital fabrication have advanced means to actuate physical infrastructure in real-time. These 'reactive spaces' have typically explored movement and media as a means to achieve reactivity and physical deformation (Chatting et al. 2017). However, here we recontextualize 'reactive' as finding new mechanisms for permanent and non-deformable everyday materials and environments. In this paper, we describe our ongoing work to create a series of complex forms - modular concrete panels - using thermal, tactile and thermochromic responses controlled by embedded networked system. We create individualized pathways to thermally actuate these surfaces and explore expressive methods to respond to the conditions around these forms - the environment, the systems that support them, their interaction and relationships to human occupants. We outline the design processes to achieve thermally adaptive concrete panels, illustrate interactive scenarios that our system enables, and discuss opportunities for new forms of interactivity within the built environment.
keywords Responsive environments; Geometrically induced thermodynamics; Ambient devices; Internet of things; Modular electronic systems
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaaderis2018_103
id ecaaderis2018_103
authors Davidová, Marie and Prokop, Šimon
year 2018
title TreeHugger - The Eco-Systemic Prototypical Urban Intervention
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 75-84
keywords The paper discusses co-design, development, production, application of TreeHugger (see Figure 1). The co-design among community and trans-disciplinary participants with different expertise required scope of media mix, switching between analogue, digital and back again. This involves different degrees of physical and digital 'GIGA-Mapping' (Sevaldson, 2011, 2015), 'Grasshopper3d' (Davidson, 2017) scripting and mix of digital and analogue fabrication to address the real life world. The critical participation of this 'Time-Based Design' (Sevaldson, 2004, 2005) process is the interaction of the prototype with eco-systemic agency of the adjacent environment - the eco-systemic performance. The TreeHugger is a responsive solid wood insect hotel, generating habitats and edible landscaping (Creasy, 2004) on bio-tope in city centre of Prague. To extend the impact, the code was uploaded for communities to download, local-specifically edit and apply worldwide. Thus, the fusion of discussed processes is multi-scaled and multi-layered, utilised in emerging design field: Systemic Approach to Architectural Performance.
series eCAADe
email
last changed 2018/05/29 14:33

_id ecaade2017_309
id ecaade2017_309
authors Lo Turco, Massimiliano, Zich, Ursula, Astolfi, Arianna, Shtrepi, Louena and Botto Poaola, Matteo
year 2017
title From digital design to physical model - Origami techniques applied to dynamic paneling shapes for acoustic performance control
doi https://doi.org/10.52842/conf.ecaade.2017.2.077
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 77-86
summary The recent trend toward non-standard and free form architecture has generated a lot of debate among the Scientific Community. The reasons can be found in the renewed interest in organic shapes, in addition to recent and powerful capabilities of parametric platforms. In this regard, the Visual Programming Language (VPL) interface gives a high level of freedom and control for conceiving complex shapes. The geometric problems in identifying a suitable shape have been addressed by relying on the study of Origami. The control of variable geometry has required the use of algorithmic models that ensure fast changes and free control of the model, besides a physical one made of rigid cardboard to simulate its rigid-foldability. The aim is to present a prototype of an adaptive structure, with an acoustic application, to control sound quality and perception in spaces where this has a central role, such as theatres or concert halls.
keywords parametric modeling; generative design; shape and form studies; acoustics conditions; digital Representation
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2017_021
id ecaade2017_021
authors Agirbas, Asli
year 2017
title The Use of Simulation for Creating Folding Structures - A Teaching Model
doi https://doi.org/10.52842/conf.ecaade.2017.1.325
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 325-332
summary In architectural education, the demand for creating forms with a non-Euclidean geometry, which can only be achieved by using the computer-aided design tools, is increasing. The teaching of this subject is a great challenge for both students and instructors, because of the intensive nature of architecture undergraduate programs. Therefore, for the creation of those forms with a non-Euclidean geometry, experimental work was carried out in an elective course based on the learning visual programming language. The creation of folding structures with form-finding by simulation was chosen as the subject of the design production which would be done as part of the content of the course. In this particular course, it was intended that all stages should be experienced, from the modeling in the virtual environment to the digital fabrication. Hence, in their early years of architectural education, the students were able to learn versatile thinking by experiencing, simultaneously, the use of simulation in the environment of visual programming language, the forming space by using folding structures, the material-based thinking and the creation of their designs suitable to the digital fabrication.
keywords Folding Structures; CAAD; Simulation; Form-finding; Architectural Education
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2017_277
id ecaade2017_277
authors Borhani, Alireza and Kalantar, Negar
year 2017
title APART but TOGETHER - The Interplay of Geometric Relationships in Aggregated Interlocking Systems
doi https://doi.org/10.52842/conf.ecaade.2017.1.639
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 639-648
summary In this research, the authors discuss multiple design process criteria, fabrication methods, and assembly workflows for covering spaces using discrete pieces of material shorter than the space's span, otherwise known as topologically interlocking structures. To expand this line of research, the study challenges the interplay of geometric relationships in the assembly of unreinforced and mortar-less structures that work purely under compressive forces. This work opens with a review of studies concerning topological interlocking, a unique type of material and structural system. Then, through a description of two design projects - an interlocking footbridge and a vaulted structure - the authors demonstrate how they encouraged students to engage in a systematic exploration of the generative relationships among surface geometry, the configuration and formal variations of its subdividing cells, and the stability of the final interlocking assembly. In this fashion, the authors argue that there is hope for carrying the design criteria of topological interlocking systems into the production of precast concrete structures.
keywords Topological Interlocking Assembly, Digital Stereotomy, Compression-Only Vaulted Structures, Surface Tessellation, Digital Materiality.
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2017_201
id ecaade2017_201
authors De Azambuja Varela, Pedro and Sousa, José Pedro
year 2017
title Fabricating Stereotomy - Variable moulds for cast voussoirs
doi https://doi.org/10.52842/conf.ecaade.2017.2.193.2
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 193-200
summary Recent developments in digital design and fabrication tools have led architects and researchers to renew the interest in stereotomy. This interest converges with a growing ecological and economical conscience that matches classic stereotomy raw material needs: compression resistance materials. However, material resources or prefabrication time are still major counterparts for the adoption of this construction system. This paper focuses in exploring techniques that profit from the interdependency between built form and fabrication technique, foraging methodologies that allow for stereotomic block creation with simpler resources. The premise is to explore faster, cheaper, more accessible ways to build stereotomic structures. The technique developed in this research explores alternatives to the traditional cutting of stone by expanding techniques for variable moulds to form solid voussoirs.
keywords stereotomy; voussoir; mould; variable production; robotic fabrication
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2017_142
id ecaade2017_142
authors Gönenç Sorguç, Arzu, Kruşa Yemişcio?lu, Müge, Özgenel, Ça?lar F?rat, Katipo?lu, Mert Ozan and Rasulzade, Ramin
year 2017
title The Role of VR as a New Game Changer in Computational Design Education
doi https://doi.org/10.52842/conf.ecaade.2017.1.401.2
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 401-408
summary With the rapid advances in technology, virtual reality(VR) re-emerged as an affordable technology providing new potentials for virtual learning environments(VLE). Within the scope of this study, firstly a general perspective on potentials of VR to create an appropriate VLE is put forward regarding the potentials related with learning modalities. Then, VR as a VLE in architectural education is discussed and utilization of VR is revisited considering the fundamentals of education as how to enhance skills regarding creativity, furnish students to adopt future skills and how VR can be used to enhance design understanding as well as space perception and spatial relations. It is deliberated that instead of mirroring the real spaces, allowing students to understand the virtuality with its own constituents will broaden the understanding of space, spatial relations, scale, motion, and time both in physical and virtual. The dichotomy between physical and virtual materiality, the potentials and pitfalls in the process of transformation from real/physical to virtual - virtual to real/physical are discussed in relation with the student projects designed in the scope of Digital Design Studio course in Middle East Technical University. It is also shown that VR stimulates different learning modalities especially kinesthetic modality and helping students to develop creativity and metacognition about space and spatial relations.
keywords computational design education; virtual reality; digital tools; virtual learning environment
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2017_002
id caadria2017_002
authors Haeusler, M. Hank, Muehlbauer, Manuel, Bohnenberger, Sascha and Burry, Jane
year 2017
title Furniture Design Using Custom-Optimised Structural Nodes
doi https://doi.org/10.52842/conf.caadria.2017.841
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 841-850
summary Additive manufacturing techniques and materials have evolved rapidly during the last decade. Applications in architecture, engineering and construction are getting more attention as 3D printing is trying to find its place in the industry. Due to high material prices for metal 3d printing and in-homogenous material behaviour in printed plastic, 3D printing has not yet had a very significant impact at the scale of buildings. Limitations on scale, cost, and structural performance have also hindered the advancement of the technology and research up to this point. The research presented here takes a case study for the application of 3D printing at a furniture scale based on a novel custom optimisation approach for structural nodes. Through the concentration of non-standard geometry on the highly complex custom optimised nodes, 3D printers at industrial product scale could be used for the additive manufacture of the structural nodes. This research presents a design strategy with a digital process chain using parametric modeling, virtual prototyping, structural simulation, custom optimisation and additive CAD/CAM for a digital workflow from design to production. Consequently, the digital process chain for the development of structural nodes was closed in a holistic manner at a suitable scale.
keywords Digital fabrication; node optimisation; structural performance; 3D printing; carbon fibre.
series CAADRIA
email
last changed 2022/06/07 07:49

_id ecaade2017_094
id ecaade2017_094
authors Jovanovic, Marko, Vucic, Marko, Mitov, Dejan, Tepavčević, Bojan, Stojakovic, Vesna and Bajsanski, Ivana
year 2017
title Case Specific Robotic Fabrication of Foam Shell Structures
doi https://doi.org/10.52842/conf.ecaade.2017.2.135
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 135-142
summary Most recent developments in the design of free form shells pursue new approaches in digital fabrication based on material properties and construction-aware design. In this research we proposed an alternative approach based on implementation of expanded polystyrene (EPS), a non-standard material for shells, in the process of industrial robot fabrication that enables fast and precise cutting of building elements. Main motivation for using EPS as a building material was driven by numerous advantages when compared to commonly used materials such as: recycleability, cost-efficiency, high earthquake resistance, durability and short assembly time. We describe case specific fabrication approach based on numerous production constraints (size of the panels, limited robot workspace, in situ conditions) that directly design the process.
keywords computational design; shell structures; robotic fabrication; hot-wire cutting; multi-robot control
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia17_374
id acadia17_374
authors Manninger, Sandra; del Campo, Matias
year 2017
title Plato's Columns: Platonic Geometries vs. Vague Gestures in Robotic Construction
doi https://doi.org/10.52842/conf.acadia.2017.374
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 374- 381
summary This paper examines the inherent possibilities for architectural production in automated deposition modeling techniques, primarily explored through the use of industrial robots in combination with plastic deposition heads. These robots, in combination with various polymers, toolpaths and colorations, served as a design ecology for the exploration of emergent behaviors in robotic construction. The relationship between geometry (Euclidian, topological, fractal), mechanical properties of material (plasticity, elasticity, viscosity, resilience), optical properties (color, absorbance, transmittance, scattering), and the gestural qualities of robotic toolpaths constitute the palette adopted for the presented project. The project combines the rigor of a platonic body (Figure 2) with the emergent properties of vague gestures. The introduction of moments of uncertainty in the process produces glitches that are embraced as an opportunity to find novel aesthetic conditions. The profound entanglement with the post-digital realm is discussed as the discursive plane of thinking applied to the project.
keywords design methods; information processing fabrication; construction/robotics; form finding; computational / artistic cultures
series ACADIA
email
last changed 2022/06/07 07:59

_id acadia17_392
id acadia17_392
authors Mesa, Olga; Stavric, Milena; Mhatre, Saurabh; Grinham, Jonathan; Norman, Sarah; Sayegh, Allen; Bechthold, Martin
year 2017
title Non-Linear Matters: Auxetic Surfaces
doi https://doi.org/10.52842/conf.acadia.2017.392
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 392- 403
summary Auxetic structures exhibiting non-linear buckling are a prevalent research topic in the material sciences due to the ability to tune their reversible actuation, porosity, and negative Poisson’s ratio. However, the research is limited to feature sizes at scales below 10 mm2, and to date, there are no available efficient design and prototyping methods for architectural designers. Our study develops design principles and workflow methods to transform standard materials into auxetic surfaces at an architectural scale. The auxetic behavior is accomplished through buckling and hinging by subtracting from a homogeneous material to create perforated patterns. The form of the perforations, including shape, scale, and spacing, determines the behavior of multiple compliant "hinges" generating novel patterns that include scaling and tweening transformations. An analytical method was introduced to generate hinge designs in four-fold symmetric structures that approximate non-linear buckling. The digital workflow integrates a parametric geometry model with non-linear finite element analysis (FEA) and physical prototypes to rapidly and accurately design and fabricate auxetic materials. A robotic 6-axis waterjet allowed for rapid production while maintaining needed tolerances. Fabrication methods allowed for spatially complex shaping, thus broadening the design scope of transformative auxetic material systems by including graphical and topographical biases. The work culminated in a large-scale fully actuated and digitally controlled installation. It was comprised of auxetic surfaces that displayed different degrees of porosity, contracting and expanding while actuated electromechanically. The results provide a promising application for the rapid design of non-linear auxetic materials at scales complimentary to architectural products.
keywords material and construction; CAM; prototyping; smart materials; auxetic
series ACADIA
email
last changed 2022/06/07 07:58

_id acadia17_404
id acadia17_404
authors Miller, Nathan; Stasiuk, David
year 2017
title A Novel Mesh-Based Workflow for Complex Geometry in BIM
doi https://doi.org/10.52842/conf.acadia.2017.404
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 404- 413
summary Various well-established digital modeling software platforms enable architectural design teams to rapidly sculpt and iterate over complex, doubly curved, and organic geometries. However, the software platforms that are used to author such geometries are rarely the same that are used for later-stage project development and delivery. For these phases of project execution, projects of even modest complexity are managed through building information modeling (BIM) software. Yet most BIM solutions are not suitable for natively handling the design of geometrically complex forms, failing to provide lightweight, responsive, or flexible authoring interfaces. A further complication is their inability to readily import or integrate any complex geometric elements or assemblies generated elsewhere. The development of improvements to interoperability between authoring and production software therefore remains an important goal in contemporary architectural practice. This paper describes a practical methodology that then engages various Application Programming Interfaces (APIs) and open-source programming tools to address the problem of interoperability for complex geometry in BIM. Specifically, it identifies meshes as a well-positioned data structure for use within the context of preparing complex design geometry for BIM production. We describe a novel technique for the efficient interoperability of complex NURBS poly-surface objects from one authoring platform, employing design meshes that cleanly capture not just geometry, but also user and procedurally derived descriptive data elements for advanced representation and analysis within a BIM production environment.
keywords design methods; information processing; BIM
series ACADIA
email
last changed 2022/06/07 07:58

_id ijac201715404
id ijac201715404
authors Miranda, Pablo
year 2017
title Computer utterances: Sequence and event in digital architecture
source International Journal of Architectural Computing vol. 15 - no. 4, 268-284
summary Barely a month before the end of World War II, a technical report begun circulating among allied scientists: the ‘First Draft of a Report on the EDVAC’, attributed to John von Neumann, described for the first time the design and implementation of the earliest stored-program computer. The ‘First Draft’ became the template followed by subsequent British and American computers, establishing the standard characteristics of most computing machines to date. This article looks at how the material and design choices described in this report influenced architecture, as it set up the technological matrix onto which a discipline relying on a tradition of drawn geometry would be eventually completely remediated. It consists of two parts: first, a theoretical section, analysing the repercussions for architecture of the type of computer laid out in the ‘First Draft’. Second, a description of a design experiment, a sort of information furniture, that tests and exemplifies some of the observations from the first section. This experiment examines the possibilities of an architecture that, moving beyond geometric representations, uses instead the programming of events as its rationale. The structure of this article reflects a methodology in which theoretical formulation and design experiments proceed in parallel. The theoretical investigation proposes concepts that can be tested and refined through design and conversely design work determines and encourages technical, critical and historical research. This relation is dialogical: theoretical investigation is not simply a rationalisation and explanation of earlier design work; inversely, the role of design is not just to illustrate previously formulated concepts. Both design and theorisation are interdependent but autonomous in their parallel development.
keywords Stored-program, Turing machine, Electronic Discrete Variable Automatic Computer, inscription/incorporation, geometry, sequence, event, information furniture, tangible interface, calm technoloy
series journal
email
last changed 2019/08/07 14:03

_id ecaade2017_265
id ecaade2017_265
authors Motalebi, Nasim and Duarte, José Pinto
year 2017
title A Shape Grammar of Emotional Postures - An approach towards encoding the analogue qualities of bodily expressions of emotions
doi https://doi.org/10.52842/conf.ecaade.2017.2.485
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 485-492
summary This paper is concerned with the translation of analogue qualities of human emotions into digital readings. Human body postures are considered as one of the main behavioral conduits for non-verbal communication and emotional expressions (Shan et.al., 2007). This research is the first step towards identifying and detecting emotions through posture analysis of users moving through space; leading towards generating real time responses in the form of spatial configurations to users' emotions. Such spatial configurations would then help inhabitants reach certain emotional states that would enhance their life quality. In order to achieve this goal, we propose a methodology for developing a comprehensive shape grammar algorithm that could evaluate and predict bodily expressions of emotions. The importance of this study lies under the embodied interactions (Streech et.al., 2011) in space. As the circumfixed space impacts the embodied mind, the body impacts its surrounding including the architectural space.
keywords Shape Grammar; Computation; Emotion; Posture; Interactive Architecture
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2023_259
id ecaade2023_259
authors Sonne-Frederiksen, Povl Filip, Larsen, Niels Martin and Buthke, Jan
year 2023
title Point Cloud Segmentation for Building Reuse - Construction of digital twins in early phase building reuse projects
doi https://doi.org/10.52842/conf.ecaade.2023.2.327
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 327–336
summary Point cloud processing has come a long way in the past years. Advances in computer vision (CV) and machine learning (ML) have enabled its automated recognition and processing. However, few of those developments have made it through to the Architecture, Engineering and Construction (AEC) industry. Here, optimizing those workflows can reduce time spent on early-phase projects, which otherwise could be spent on developing innovative design solutions. Simplifying the processing of building point cloud scans makes it more accessible and therefore, usable for design, planning and decision-making. Furthermore, automated processing can also ensure that point clouds are processed consistently and accurately, reducing the potential for human error. This work is part of a larger effort to optimize early-phase design processes to promote the reuse of vacant buildings. It focuses on technical solutions to automate the reconstruction of point clouds into a digital twin as a simplified solid 3D element model. In this paper, various ML approaches, among others KPConv Thomas et al. (2019), ShapeConv Cao et al. (2021) and Mask-RCNN He et al. (2017), are compared in their ability to apply semantic as well as instance segmentation to point clouds. Further it relies on the S3DIS Armeni et al. (2017), NYU v2 Silberman et al. (2012) and Matterport Ramakrishnan et al. (2021) data sets for training. Here, the authors aim to establish a workflow that reduces the effort for users to process their point clouds and obtain object-based models. The findings of this research show that although pure point cloud-based ML models enable a greater degree of flexibility, they incur a high computational cost. We found, that using RGB-D images for classifications and segmentation simplifies the complexity of the ML model but leads to additional requirements for the data set. These can be mitigated in the initial process of capturing the building or by extracting the depth data from the point cloud.
keywords Point Clouds, Machine Learning, Segmentation, Reuse, Digital Twins
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2017_174
id ecaade2017_174
authors Tonn, Christian
year 2017
title Designing Colour in Virtual Reality - Comparing a Virtual Reality based and a Screen based Colour Design Method
doi https://doi.org/10.52842/conf.ecaade.2017.2.721
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 721-728
summary Designing colours for architecture with digital tools is still a challenging topic. Especially for customers and students the perception of a full-scale coloured interior room is hard to imagine. This paper presents a software prototype and a small user study, which addresses the colour design process with professional digital tools and a virtual reality head mounted device (Oculus Rift DK2). The user can navigate within an imported three-dimensional model freely and change colour, texture and light properties with a real-time updated radiosity visualization. The presented user study compares a screen based working method with the developed virtual reality based design support and interaction method.
keywords Virtual Reality; Colour; Design Support; Real-time; VR-glasses
series eCAADe
email
last changed 2022/06/07 07:58

_id sigradi2022_51
id sigradi2022_51
authors Varsami, Constantina; Tsamis, Alexandros; Logan, Timothy
year 2022
title Gaming Engine as a Tool for Designing Smart, Interactive, Light-Sculpting Systems
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 617–628
summary Even though interactive (Offermans et.al., 2013), adaptive (Viani et.al., 2017), and self-optimizable (Sun et.al., 2020) lighting systems are becoming readily available, designing system automations, and evaluating their impact on user experience significantly challenges designers. In this paper we demonstrate the use of a gaming engine as a platform for designing, simulating, and evaluating autonomous smart lighting behaviors. We establish the Human - Lighting System Interaction Framework, a computational framework for developing a Light Sculpting Engine and for designing occupant-system interactions. Our results include a. a method for combining in real-time lighting IES profiles into a single ‘combined’ profile - b. algorithms that optimize in real-time, lighting configurations - c. direct glare elimination algorithms, and d. system energy use optimization algorithms. Overall, the evolution from designing static building components to designing interactive systems necessitates the reconsideration of methods and tools that allow user experience and system performance to be tuned by design.
keywords User Experience, Human-Building Interaction, Smart Lighting, Lighting Simulation, Gaming Engine
series SIGraDi
email
last changed 2023/05/16 16:56

_id caadria2017_009
id caadria2017_009
authors Yang, Xuyou, Koh, Shawn Jyh Shen, Loh, Paul and Leggett, David
year 2017
title Robotic Variable Fabric Formwork
doi https://doi.org/10.52842/conf.caadria.2017.873
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 873-882
summary Casting is one of the most widely used construction techniques. Complex geometries produced via computational design processes are not easily achievable through traditional rigid formwork and are subject to increase material waste. More suitable casting techniques are required to efficiently represent digital design output. This paper presents a variable fabric formwork developed to work in conjunction with a 6-axis robotic arm for casting doubly curved panels based on hyperbolic paraboloid geometry. The variable formwork is designed to be extendable in length and width so it is able to produce a wide range of outcome within a single formwork. The interface established in the workflow allows the physical formwork and digital design to influence each other. This variable fabric formwork reduces construction waste and is a more sustainable method of casting complex geometries.
keywords Digital fabrication; Robotic production; fabric casting
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia17_670
id acadia17_670
authors Zwierzycki, Mateusz; Vestartas, Petras; Heinrich, Mary Katherine; Ayres, Phil
year 2017
title High Resolution Representation and Simulation of Braiding Patterns
doi https://doi.org/10.52842/conf.acadia.2017.670
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 670- 679
summary From the hand-crafted to the highly engineered, braided structures have demonstrated broad versatility across scales, materials, and performance types, leading to their use in a plethora of application domains. Despite this prevalence, braided structures have seen little exploration within a contemporary architectural context. Within the flora robotica project, complex braided structures are a core element of the architectural vision, driving a need for generalized braid design modeling tools that can support fabrication. Due to limited availability of existing suitable tools, this interest motivates the development of a digital toolset for design exploration. In this paper, we present our underlying methods of braid topology representation and physics-based simulation for hollow tubular braids. We contextualize our approach in the literature where existing methods for this class of problem are not directly suited to our application, but offer important foundations. Generally, the tile generation method we employ is an already known approach, but we meaningfully extend it to increase the flexibility and scope of topologies able to be modeled. Our methods support design workflows with both predetermined target geometries and generative, adaptive inputs. This provides a high degree of design agency by supporting real-time exploration and modification of topologies. We address some common physical simulation problems, mainly the overshooting problem and collision detection optimization, for which we develop dynamic simulation constraints. This enables unrolling into realistically straight strips, our key fabrication-oriented contribution. We conclude by outlining further work, specifically the design and realization of physical braids, fabricated robotically or by hand.
keywords design methods; information processing; fabrication; digital craft; manual craft; representation
series ACADIA
email
last changed 2022/06/07 07:57

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_1030 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002