CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 576

_id caadria2017_002
id caadria2017_002
authors Haeusler, M. Hank, Muehlbauer, Manuel, Bohnenberger, Sascha and Burry, Jane
year 2017
title Furniture Design Using Custom-Optimised Structural Nodes
doi https://doi.org/10.52842/conf.caadria.2017.841
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 841-850
summary Additive manufacturing techniques and materials have evolved rapidly during the last decade. Applications in architecture, engineering and construction are getting more attention as 3D printing is trying to find its place in the industry. Due to high material prices for metal 3d printing and in-homogenous material behaviour in printed plastic, 3D printing has not yet had a very significant impact at the scale of buildings. Limitations on scale, cost, and structural performance have also hindered the advancement of the technology and research up to this point. The research presented here takes a case study for the application of 3D printing at a furniture scale based on a novel custom optimisation approach for structural nodes. Through the concentration of non-standard geometry on the highly complex custom optimised nodes, 3D printers at industrial product scale could be used for the additive manufacture of the structural nodes. This research presents a design strategy with a digital process chain using parametric modeling, virtual prototyping, structural simulation, custom optimisation and additive CAD/CAM for a digital workflow from design to production. Consequently, the digital process chain for the development of structural nodes was closed in a holistic manner at a suitable scale.
keywords Digital fabrication; node optimisation; structural performance; 3D printing; carbon fibre.
series CAADRIA
email
last changed 2022/06/07 07:49

_id cf2017_321
id cf2017_321
authors Rossini, Francesco Livio; Novembri, Gabriele; Fioravanti, Antonio
year 2017
title AS&BIM – A Unified Model of Agent Swarm and BIM to Manage the Complexity of the Building Process
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 321-332.
summary Analyzing the success rate of the building process, it emerges that it is an industrial sector that lacks efficiency. Nevertheless, during decades the trend was to compare and bring into contact manufacturing management procedures vis-?-vis the building industry. But, whilst a manufacturing product is essentially a standard object produced in a controlled environment, a building is a prototype in itself. To bridge this gap research on Artificial Intelligence was conducted, so as to move from the traditional trial-and-error process to the simulation approach, defining in a virtual environment results of design and management choices before the real application, thus mitigating risks. To attain these results, a prototype was developed based on the Hybrid Actor Agent approach. The Agents, governed by their rules, behaviors and goals, define actions while Actors manage communication among them. The Network intertwined among these Agent/Actor systems is capable of stratifying knowledge based on the success rate of the choices made. The result of these concurrent computations is an optimized building process flow-chart
keywords Artificial Intelligence, Project Management, Building Information Modeling
series CAAD Futures
email
last changed 2017/12/01 14:38

_id acadia17_660
id acadia17_660
authors Zivkovic, Sasa; Battaglia, Christopher
year 2017
title Open Source Factory: Democratizing Large-Scale Fabrication Systems
doi https://doi.org/10.52842/conf.acadia.2017.660
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 660- 669
summary Open source frameworks have enabled widespread access to desktop-scale additive manufacturing technology and software, but very few highly hackable large-scale or industrial open source equipment platforms exist. As research trajectories continue to move towards large-scale experimentation and full-scale building construction in robotic and digital fabrication, access to industrial fabrication equipment is critical. Large-scale digital fabrication equipment usually requires extensive start-up investments which becomes a prohibitive factor for open research. Expanding on the idea of the Fab Lab as well as the RepRap movement, the Open Source Factory takes advantage of disciplinary expertise and trans-disciplinary knowledge in construction machine design accumulated over the past decade. With the goal to democratize access to large-scale industrial fabrication equipment, this paper outlines the creation of two full-scale fabrication systems: a RepRap based large-scale 3-axis open source CNC gantry and a 6-axis industrial robot system based on a decommissioned KUKA KR200/2. Both machines offer radically different economic frameworks for implementing research in advanced full scale robotic fabrication into contexts of pedagogy, the research lab, practice, or small scale local building industry. This research demonstrates that such equipment can be implemented by building on the current knowledge base in the field. If industrial robots and other large-scale fabrication tools become accessible for all, the collective sharing of research and the development of new ideas in full-scale robotic building construction can be substantially accelerated.
keywords education, society & culture; CAM; prototyping; construction/robotics; education; digital heritage
series ACADIA
email
last changed 2022/06/07 07:57

_id lasg_whitepapers_2019_133
id lasg_whitepapers_2019_133
authors Ji, Haru Hyunkyung; and Graham Wakefield
year 2019
title Selected Artificial Natures, 2017-2018
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.133 - 142
summary Artificial Nature is a research-creation collaboration co-founded by Haru Hyunkyung Ji and Graham Wakefield in 2007. It has led to a decade of immersive installations in which the invitation is to become part of an alien ecosystem rich in feedback networks.1 Here we present four recent works in this series between 2017 and 2018.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id lasg_whitepapers_2019_157
id lasg_whitepapers_2019_157
authors Kretzer, Manuel
year 2019
title Tomorrowland
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.157 - 172
summary This essay is a transcript of a series of lectures I presented entitled ‘Tomorrowland’ and is partially based on material which has been previously published in ‘Information Materials – Smart Materials for Adaptive Architecture, Manuel Kretzer. Bern: Springer International Publishing, 2017’ as well as an unpublished paper co-written with Adil Bokhari on our common design studio ‘Synthetic Ecologies.’
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id acadia17_330
id acadia17_330
authors Krietemeyer, Bess; Bartosh, Amber; Covington, Lorne
year 2017
title Shared Realities: A Method for Adaptive Design Incorporating Real-Time User Feedback using Virtual Reality and 3D Depth-Sensing Systems
doi https://doi.org/10.52842/conf.acadia.2017.330
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 330- 339
summary When designing interactive architectural systems and environments, the ability to gather user feedback in real time provides valuable insight into how the system is received and ultimately performs. However, physically testing or simulating user behavior with an interactive system outside of the actual context of use can be challenging due to time constraints and assumptions that do not reflect accurate social, behavioral, or environmental conditions. Employing evidence based, user-centered design practices from the field of human–computer interaction (HCI) coupled with emerging architectural design methodologies creates new opportunities for achieving optimal system performance and design usability for interactive architectural systems. This paper presents a methodology for developing a mixed reality computational workflow combining 3D depth sensing and virtual reality (VR) to enable iterative user-centered design. Using an interactive museum installation as a case study, user pointcloud data is observed via VR at full scale and in real time for a new design feedback experience. Through this method, the designer is able to virtually position him/herself among the museum installation visitors in order to observe their actual behaviors in context and iteratively make modifications instantaneously. In essence, the designer and user effectively share the same prototypical design space in different realities. Experimental deployment and preliminary results of the shared reality workflow are presented to demonstrate the viability of the method for the museum installation case study and for future interactive architectural design applications. Contributions to computational design, technical challenges, and ethical considerations are discussed for future work.
keywords design methods; information processing; hci; VR; AR; mixed reality; computer vision
series ACADIA
email
last changed 2022/06/07 07:52

_id cf2017_513
id cf2017_513
authors Milovanovic, Julie; Moreau, Guillaume; Siret, Daniel; Miguet, Francis
year 2017
title Virtual and Augmented Reality in Architectural Design and Education: An Immersive Multimodal Platform to Support Architectural Pedagogy
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 513-532.
summary Virtual Reality and Augmented Reality research in the architecture field show a variety of possible uses of systems to accompany designers, laymen and decision makers in their architectural design process. This article provides a survey of VR and AR devices among a corpus of papers selected from conferences and journals on CAAD (Computer Aided Architectural Design). A closer look at some specific research projects highlights their potentials and limits, which formalize milestones for future challenges to address. Identifying advantages and drawbacks of those devices gave us insights to propose an alternative type of system, CORAULIS, including both VR and SAR technologies, in order to support collaborative design to be implemented in a pedagogical environment.
keywords Augmented Reality, Virtual Reality, Design Education, Architectural Design
series CAAD Futures
email
last changed 2017/12/01 14:38

_id lasg_whitepapers_2019_291
id lasg_whitepapers_2019_291
authors Sabin, Jenny
year 2019
title Lumen
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.291 - 318
summary This paper documents the computational design methods, digital fabrication strategies, and generative design process for [Lumen], winner of MoMA & MoMA PS1’s 2017 Young Architects Program. The project was installed in the courtyard at MoMA PS1 in Long Island City, New York, during the summer of 2017. Two lightweight 3D digitally knitted fabric canopy structures composed of responsive tubular and cellular components employ recycled textiles, photo-luminescent and solar active yarns that absorb and store UV energy, change color, and emit light. This environment offers spaces of respite, exchange, and engagement as a 150 x 75-foot misting system responds to visitors’ proximity, activating fabric stalactites that produce a refreshing micro-climate. Families of robotically prototyped and woven recycled spool chairs provide seating throughout the courtyard. The canopies are digitally fabricated with over 1,000,000 yards of high tech responsive yarn and are supported by three 40+ foot tensegrity towers and the surrounding matrix of courtyard walls. Material responses to sunlight as well as physical participation are integral parts of our exploratory approach to the 2017 YAP brief. The project is mathematically generated through form-finding simulations informed by the sun, site, materials, program, and the material morphology of knitted cellular components. Resisting a biomimetic approach, [Lumen] employs an analogic design process where complex material behavior and processes are integrated with personal engagement and diverse programs. The comprehensive installation was designed by Jenny Sabin Studio and fabricated by Shima Seiki WHOLEGARMENT, Jacobsson Carruthers, and Dazian with structural engineering by Arup and lighting by Focus Lighting.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id ecaade2017_230
id ecaade2017_230
authors Simeone, Davide, Cursi, Stefano and Coraglia, Ugo Maria
year 2017
title Modelling Buildings and their Use as Systems of Agents
doi https://doi.org/10.52842/conf.ecaade.2017.1.085
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 85-92
summary This research investigates the development of a new modelling and simulation approach for building design - defined as Agent-Based Building Modelling - that moves from the current object-oriented representation (such as in BIM) to an agent-based one. In the proposed approach, the representation domain is extended in order to include users and hosted activities, and the static modelling of the building is integrated with the dynamic simulation of its functioning. For this purpose, this paper presents a general template of the agent that ensures homogeneity of formalisation of the different typologies of entities (building components, spaces, V-Users, activities) and support the virtual simulation of the use process.
keywords Agent-Based Modelling and Simulation; Behavioural Simulation; BIM; Game engine; Agent-Based Building Modelling
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia17_600
id acadia17_600
authors Tabrizian, Payam; Harmon, Brendan; Petrasova, Anna; Petras, Vaclav; Mitasova, Helena; Meentemeyer, Ross
year 2017
title Tangible Immersion for Ecological Design
doi https://doi.org/10.52842/conf.acadia.2017.600
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 600- 609
summary We introduce tangible immersion—virtual reality coupled with tangible interaction—to foster interdisciplinary collaboration in a critical yet creative design process. Integrating tangible, embodied interaction with geospatial modeling and immersive virtual environments (IVE) can make 3D modeling fast and natural, while enhancing it with realistic graphics and quantitative analytics. We have developed Tangible Landscape, a technology that links a physical model with a geographic information system and 3D-modeling platform through a real-time cycle of interaction, 3D scanning, geospatial computation, and 3D rendering. With this technology, landscape architects, other professionals, and the public can collaboratively explore design alternatives through an iterative process of intuitive ideation, geocomputational analysis, realistic rendering, and critical analysis. This is demonstrated with a test case for interdisciplinary problem-solving, in which a landscape architect and geoscientist use Tangible Landscape to collaboratively design landforms, hydrologic systems, planting, and a trail network for a brownfield site. Using this tangible immersive environment they rapidly explored alternative scenarios. We discuss how the participants used real-time analytics to collaboratively assess trade-offs between environmental and experiential factors, balancing landscape complexity, biodiversity, remediation capacity, and aesthetics. Together they explored how the relationship between landforms and natural processes affected the performance of the designed landscape. Technologies that couple tangible geospatial modeling with IVEs have the potential to transform the design process by breaking down disciplinary boundaries, but may also offer new ways to imagine space and democratize design.
keywords design methods; information processing; simulation & optimization; collaboration; VR; AR; mixed reality
series ACADIA
email
last changed 2022/06/07 07:56

_id caadria2018_209
id caadria2018_209
authors Yao, Jiawei, Lin, Yuqiong, Zhao, Yao, Yan, Chao, Li, Changlin and Yuan, Philip F.
year 2018
title Augmented Reality Technology based Wind Environment Visualization
doi https://doi.org/10.52842/conf.caadria.2018.1.369
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 369-377
summary Considering the outdoor environment at the initial stage of design process plays a significant role on future building performance. Augmented Reality (AR) technology applied in this research can integrate real world building morphology information and virtual world ventilation information seamlessly that rapidly and directly provides designers information for observation and evaluation. During the case study of "2017 Shanghai DigitalFUTURE" summer workshop, a research on augmented reality technology based wind environment visualization was carried on. The achievement with an application software not only showed the geometric information of the real world objects (such as buildings), but also the virtual wind environment has displayed. Thus, these two kinds of information can complement and superimpose each other. This AR technology based software brings multiple synthetic together, which can (1) visualize the air flow around buildings that provides designers rapid and direct information for evaluation; (2) deal with wind-environment-related data quantitatively and present in an intuitive, easy-to-interpret graphical way; and (3) be further developed as a visualization system based on built-in environments in the future, which contributes to rapid evaluation of a series of programs at the beginning of the building design.
keywords Environment visualization; Augmented reality technology; Fast response; Outdoor ventilation
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2017_169
id ecaade2017_169
authors Zupancic, Tadeja, Verbeke, Johan, Herneoja, Aulikki and Achten, Henri
year 2017
title Competences for Digital Leadership in Architecture
doi https://doi.org/10.52842/conf.ecaade.2017.1.289
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 289-296
summary The use of "digital technology" - computer software, new material application, rapid prototyping, Computer Aided Manufacturing, Virtual Reality, collaborative design - is no longer a novel and innovative aspect of architectural design. In fact, many offices and architects use a varied mix of these technologies in their daily practice. We can observe that digital technology has become a mature part of architectural practice. In this paper, we want to outline an outstanding level of excellence in the use of digital technologies that enable certain widely acknowledged offices (for example Foster and Partners, UN Studio, BIG, and so on) to take their design work to high degree of quality and performance. We call this level and phenomenon "digital leadership." Digital leadership goes beyond technical digital skills. It is an integrated and holistic approach that makes no distinction between "architectural design" and "digital technology" and in fact creates a new blend of both. We propose that digital leadership has six key areas: Technological Ecologies; Creativity, Knowledge Processes, and Experimentation; Design and Research; Human Resources and Leadership; Collaborative and Explorative Environments and Impact of Digital Leadership. These are discussed in more detail in this paper.
keywords architecture; digital leadership competences; research by design; creative practice; design research; impact
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2018_333
id caadria2018_333
authors Cupkova, Dana, Byrne, Daragh and Cascaval, Dan
year 2018
title Sentient Concrete - Developing Embedded Thermal and Thermochromic Interactions for Architecture and Built Environment
doi https://doi.org/10.52842/conf.caadria.2018.2.545
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 545-554
summary Historically, architectural design focused on adaptation of built environment to serve human needs. Recently embedded computation and digital fabrication have advanced means to actuate physical infrastructure in real-time. These 'reactive spaces' have typically explored movement and media as a means to achieve reactivity and physical deformation (Chatting et al. 2017). However, here we recontextualize 'reactive' as finding new mechanisms for permanent and non-deformable everyday materials and environments. In this paper, we describe our ongoing work to create a series of complex forms - modular concrete panels - using thermal, tactile and thermochromic responses controlled by embedded networked system. We create individualized pathways to thermally actuate these surfaces and explore expressive methods to respond to the conditions around these forms - the environment, the systems that support them, their interaction and relationships to human occupants. We outline the design processes to achieve thermally adaptive concrete panels, illustrate interactive scenarios that our system enables, and discuss opportunities for new forms of interactivity within the built environment.
keywords Responsive environments; Geometrically induced thermodynamics; Ambient devices; Internet of things; Modular electronic systems
series CAADRIA
email
last changed 2022/06/07 07:56

_id cf2017_601
id cf2017_601
authors Gerber, David Jason; Pantazis, Evangelos; Wang, Alan
year 2017
title Interactive Design of Shell Structures Using Multi Agent Systems: Design Exploration of Reciprocal Frames Based on Environmental and Structural Performance
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 601-616.
summary This paper presents a continuation of research on the prototyping of multi-agent systems for architectural design with a focus on generative design as a means to improve design exploration in the context of multiple objectives and complexity. The interactive design framework focuses on coupling force, environmental constraints and fabrication parameters as design drivers for the form finding of shell structures. The objective of the research is to enable designers to intuitively generate free form shells structures that are conditioned by multiple objectives for architectural exploration in early stages of design. The generated geometries are explored through reciprocal frames, and are evaluated in an automated fashion both on local and global levels in terms of their structural and environmental performance and constructability. The analytical results along with fabrication constraints are fed back into the generative design process in order to more rapidly and expansively design explore across complexly coupled objectives. The paper describes the framework and presents the application of this methodology for the design of fabrication aware shell structures in which environmental and structural trade offs drive the final set of design options.
keywords Generative Design, Parametric Design, Multi-Agent Systems, Digital Fabrication, Form Finding, Reciprocal Frames
series CAAD Futures
email
last changed 2017/12/01 14:38

_id cf2017_431
id cf2017_431
authors Gonzalez, Paloma; Sass, Larry
year 2017
title Constructive Design: Rule Discovery for 3D Printing Decomposed Large Objects
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 431-442.
summary This paper presents a rule discovery process for designers that work with physically large 3D printed models. After a period of discovery, rules were formalized, then developed into operations and programmable functions used in a generative design system. Past examples of generative systems are built based on visual constraints leading to graphical outcomes. With the emergence of 3D printing, we introduce ideas for rule building based on physical constraints and outcomes. The decomposition rules are: curved surface slicing, freestanding attribute, interval patterning, edge mating, and pneumatic attribute. The freestanding attribute, the most novel rule, is based on Chilean anti-earthquake building techniques. This rule provides the greatest degree of structural stability to a model. We conclude with a discussion of results from the case study used to generate the set constructive rules. We believe this method of module generation, 3D Printing and assembles can support design prototyping and model manufacturing across scales.
keywords Decomposition, Large Objects, 3D Printing.
series CAAD Futures
email
last changed 2017/12/01 14:38

_id sigradi2017_043
id sigradi2017_043
authors Griz, Cristiana; Natália Queiroz, Carlos Nome
year 2017
title Edificação Modular: Estudo de caso e protótipo de um sistema construtivo de código aberto utilizando prototipagem rápida [Modular Building: Case study and prototype of an open source modular system using rapid prototyping]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.293-300
summary This paper presents the research development for a base structural module for the Casa Nordeste project. Casa Nordeste is a compact housing experiment that will participate in the Solar Decathlon Latin America competition. It consists of a modular building that houses living, cooking, and sanitizing space. Developments presented are based on digital design and fabrication principles and processes, through algorithms that allow its customization. In this sense, discussions begin with a brief theoretical discussion about the concepts that underline the project: evolutionary housing; digital technologies that improve design and construction; open source construction and generative design systems. The paper finalizes by presenting and discussing developments of three different design aspects of the structural module: (a) geometry of the frames, (b) its modulation, and (c) fittings and joining mechanisms.
keywords Digital fabrication; Rapid prototyping; Visual programming; Compact housing.
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2017_003
id caadria2017_003
authors Loh, Paul and Leggett, David
year 2017
title Tools as Agents in Design and Making Processes
doi https://doi.org/10.52842/conf.caadria.2017.799
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 799-808
summary The inversion of knowledge structure in electronics prototyping platform has allowed designers and architects to design and build reasonably stable mechatronic systems to aid novel material production; these new and hacked computer numeric controlled (CNC) machines are used to explore emerging material constructs and facilitate generative design processes. This paper examines tool making and questions the agentive capacity of such tools in design processes through a case study of a bespoke CNC machine which uses vacuum thermoforming techniques. Through understanding the agentive capacity of CNC tools, the authors suggest that the knowledge structure of tool making is distinctly different from fabrication workflow. This paper proposes an alternative means of understanding the capacity of CNC tools in the design and making process.
keywords Digital Fabrication; Tool Making; Electronics Prototyping; Digital Workflow
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia17_392
id acadia17_392
authors Mesa, Olga; Stavric, Milena; Mhatre, Saurabh; Grinham, Jonathan; Norman, Sarah; Sayegh, Allen; Bechthold, Martin
year 2017
title Non-Linear Matters: Auxetic Surfaces
doi https://doi.org/10.52842/conf.acadia.2017.392
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 392- 403
summary Auxetic structures exhibiting non-linear buckling are a prevalent research topic in the material sciences due to the ability to tune their reversible actuation, porosity, and negative Poisson’s ratio. However, the research is limited to feature sizes at scales below 10 mm2, and to date, there are no available efficient design and prototyping methods for architectural designers. Our study develops design principles and workflow methods to transform standard materials into auxetic surfaces at an architectural scale. The auxetic behavior is accomplished through buckling and hinging by subtracting from a homogeneous material to create perforated patterns. The form of the perforations, including shape, scale, and spacing, determines the behavior of multiple compliant "hinges" generating novel patterns that include scaling and tweening transformations. An analytical method was introduced to generate hinge designs in four-fold symmetric structures that approximate non-linear buckling. The digital workflow integrates a parametric geometry model with non-linear finite element analysis (FEA) and physical prototypes to rapidly and accurately design and fabricate auxetic materials. A robotic 6-axis waterjet allowed for rapid production while maintaining needed tolerances. Fabrication methods allowed for spatially complex shaping, thus broadening the design scope of transformative auxetic material systems by including graphical and topographical biases. The work culminated in a large-scale fully actuated and digitally controlled installation. It was comprised of auxetic surfaces that displayed different degrees of porosity, contracting and expanding while actuated electromechanically. The results provide a promising application for the rapid design of non-linear auxetic materials at scales complimentary to architectural products.
keywords material and construction; CAM; prototyping; smart materials; auxetic
series ACADIA
email
last changed 2022/06/07 07:58

_id caadria2017_175
id caadria2017_175
authors Smolik, Andrei, Chang, Tengwen and Datta, Sambit
year 2017
title Prototyping Responsive Carrier-Component Envelopes
doi https://doi.org/10.52842/conf.caadria.2017.521
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 521-528
summary The capacity to respond dynamically to changes in external and internal environments open new possibilities in the interaction between buildings, humans and the environment. The development of dynamic envelopes requires the integration of various systems- geometric, structural, and electronic-responsive and their interaction. The paper reports the results from the "Dynamic Cloud Project" and presents a design and fabrication methodology to integrate kinetic behaviour with material constraints; the simulation of responses by connecting components with programmable input and behaviour. The paper presents a modular, component-driven systems construction based on a carrier-component surface geometry called responsive carrier-component envelope (RCCE) and describes the modelling, fabrication and assembly of such envelopes. The protocols developed in the project are reported in the paper and highlight the opportunities and consequences of how local components relate to the whole carrier envelope with multiple constraints and scale considerations. The results of the prototyping and experimentation with this project are reported in the paper. The paper also discusses future applications of the research and outlines new possibilities and design opportunities in prototyping responsive carrier-component envelopes.
keywords Dynamic envelope; carrier component mesh; sensor interaction; interactive architecture; digital fabrication
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2017_039
id ecaade2017_039
authors Weissenböck, Renate
year 2017
title ROBOTRACK - Linking manual and robotic design processes by motion-tracking
doi https://doi.org/10.52842/conf.ecaade.2017.1.651
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 651-660
summary This study investigates design opportunities fostered by fabrication processes, ex-ploring manual and robotic forming. It links handcraft and digital fabrication techniques by implementing a motion capture system. It suggests physical prototyping as a novel form of design research, operating in the dynamic field between human capabilities, machine skills, and material behavior. This paper presents a series of experimental case studies created in a seminar taught by the author at Graz University of Technology. In this course, students con-duct tactile experiments, forming panels by hand and by robot, guided by the material behav-ior and reaction. Thereby, they explore the creation of architectural form in a dynamic inter-play between human, machine and material. Movement and speed of hand forming proce-dures are recorded into digital data, and then converted into machine code, driving a 6-axis industrial robotic arm. By using the same set-up for manual and robotic forming, both pro-cesses are relatable.
keywords design by making; digital fabrication; robotic fabrication; thermoforming; material behavior; motion tracking; craft; design education; design research; intuition; human machine interaction
series eCAADe
type normal paper
email
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_787781 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002