CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 478

_id lasg_whitepapers_2019_157
id lasg_whitepapers_2019_157
authors Kretzer, Manuel
year 2019
title Tomorrowland
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.157 - 172
summary This essay is a transcript of a series of lectures I presented entitled ‘Tomorrowland’ and is partially based on material which has been previously published in ‘Information Materials – Smart Materials for Adaptive Architecture, Manuel Kretzer. Bern: Springer International Publishing, 2017’ as well as an unpublished paper co-written with Adil Bokhari on our common design studio ‘Synthetic Ecologies.’
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id ecaade2017_253
id ecaade2017_253
authors Magnusson, Frans, Runberger, Jonas, Zboinska, Malgorzata A. and Ondejcik, Vladimir
year 2017
title Morphology & Development - knowledge management in architectural design computation practice
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 683-690
doi https://doi.org/10.52842/conf.ecaade.2017.2.683
summary In this paper we address the problem of knowledge management in architectural design computation practice, reflecting on our practice at Dsearch - a design computation network within White arkitekter. As a means to investigate relevant aspects of visual scripting, we introduce the notions of code, algorithm and note. We also introduce two different modes of operation within architectural practice: morphology and development - which help us distinguish the diverse knowledge types typically occurring in the structure of visual scripts. We describe two sets of tools developed by Dsearch to continuously integrate planning and documentation with design development work. The main conclusion from our practical experience of this approach is that it allows critical reflection into an efficient workflow. This constitutes a new kind of practice based and action oriented knowledge that can be curated in the form of design narratives.
keywords design computation; architectural practice; knowledge management; visual scripting; Grasshopper
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia17_82
id acadia17_82
authors Andreani, Stefano; Sayegh, Allen
year 2017
title Augmented Urban Experiences: Technologically Enhanced Design Research Methods for Revealing Hidden Qualities of the Built Environment
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 82-91
doi https://doi.org/10.52842/conf.acadia.2017.082
summary The built environment is a complex juxtaposition of static matter and dynamic flows, tangible objects and human experiences, physical realities and digital spaces. This paper offers an alternative understanding of those dichotomies by applying experimental design research strategies that combine objective quantification and subjective perception of urban contexts. The assumption is that layers of measurable datasets can be afforded with personal feedback to reveal "hidden" characteristics of cities. Drawing on studies from data and cognitive sciences, the proposed method allows us to analyze, quantify and visualize the individual experience of the built environment in relation to different urban qualities. By operating in between the scientific domain and the design realm, four design research experiments are presented. Leveraging augmenting and sensing technologies, these studies investigate: (1) urban attractors and user attention, employing eye-tracking technologies during walking; (2) urban proxemics and sensory experience, applying proximity sensors and EEG scanners in varying contexts; (3) urban mood and spatial perception, using mobile applications to merge tangible qualities and subjective feelings; and (4) urban vibe and paced dynamics, combining vibration sensing and observational data for studying city beats. This work demonstrates that, by adopting a multisensory and multidisciplinary approach, it is possible to gain a more human-centered, and perhaps novel understanding of the built environment. A lexicon of experimented urban situations may become a reference for studying different typologies of environments from the user experience, and provide a framework to support creative intuition for the development of more engaging, pleasant, and responsive spaces and places.
keywords design methods; information processing; art and technology; hybrid practices
series ACADIA
email
last changed 2022/06/07 07:54

_id ecaade2017_155
id ecaade2017_155
authors Beir?o, José Nuno and de Klerk, Rui
year 2017
title CIM-St - A Design Grammar for Street Cross Sections
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 619-628
doi https://doi.org/10.52842/conf.ecaade.2017.2.619
summary The design of streets plays an essential role in shaping the quality of our cities. In particular, the design of a street's cross section determines in many aspects the realm of its use, enhancing or reducing its ability for being walkable streets or traffic oriented streets. This paper shows a street cross section design interface where designs are controlled by an ontology and a parametric design system supported by a shape grammar. The ontology provides a semantically ordered vocabulary of shapes, symbols and descriptions upon which the grammar is defined. This paper focuses on the grammar definitions and its translation into a design oriented interface.
keywords Parametric Design; Ontologies; Compound Grammars; Street Cross Section; Urban Design Systems
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2017_173
id ecaade2017_173
authors Buš, Peter, Hess, Tanja, Treyer, Lukas, Knecht, Katja and Lu, Hangxin
year 2017
title On-site participation linking idea sketches and information technologies - User-driven Customised Environments
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 543-550
doi https://doi.org/10.52842/conf.ecaade.2017.1.543
summary The paper introduces the methodology related to the topic of citizen-driven urban design and revises the idea of on-site participation of end-users, which could prospectively lead to customisation of architectural and urban space in a full-scale. The research in the first phase addresses the engagement of information technologies used for idea sketching in participatory design workshop related to local urban issues in the city of Chur in Switzerland by means of the Skity tool, the sketching on-line platform running on all devices. Skity allows user, which can be individual citizens or a community, to sketch, build, and adapt their ideas for the improvement of an urban locality. The participant is the expert of the locality because he or she lives in this place every day. The content of this paper is focused on the participatory design research project conducted as a study at the ETH Zürich and the Hochschule für Technik und Wirtschaft HTW in Chur in collaboration with Future Cities Laboratory in Singapore, mainly concentrated on the first step of the methodological approach introduced here.
keywords responsive cities; urban mass-customisation; idea sketching; ideation; on-site participation; citizen design science
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2017_057
id caadria2017_057
authors Buš, Peter, Treyer, Lukas and Schmitt, Gerhard
year 2017
title Urban Autopoiesis - Towards Adaptive Future Cities
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 695-704
doi https://doi.org/10.52842/conf.caadria.2017.695
summary A city, defined as a unity of inhabitants with their environment and showing self-creating and self-maintaining properties, can be considered as an autopoietic system if we take into account its bottom-up processes with unpredictable behaviour of its components. Such a property can lead to self-creation of urban patterns. These processes are studied in well-known vernacular architectures and informal settlements around the world and they are able to adapt according to various conditions and forces. The main research objective is to establish a computational design-modelling framework for modelling autopoietic intricate characteristics of a city based on an adaptability, self-maintenance and self-generation of urban patterns with adequate visual representation.The paper introduces a modelling methodology that allows to combine planning tasks with inhabitants' interaction and data sources by using an interchange framework to model more complex urban dynamics. The research yields preliminary results tested in a simulation model of a redevelopment of Tanjong Pagar Waterfront, the container terminal in the city of Singapore being transformed into a new future centre as a conducted case study.
keywords Urban Metabolism; Urban Autopoiesis; Computational Interchange; Emergent Urban Strategies; Adaptive City
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia17_170
id acadia17_170
authors Byrne, Ultan
year 2017
title Point-Cloud-Paint: A Software Tool for Speculative Urban Design Using Three-Dimensional Digital Collage
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 170-177
doi https://doi.org/10.52842/conf.acadia.2017.170
summary Beginning from a provocation in Auguste Blanqui’s Eternity by the Stars, this paper reports on a new methodology of digital collage for urban design. The research is situated relative to the current discourses surrounding both voxelization and point-cloud data structures in order to motivate the concept of a recombinant approach to design in existing cities. Building on these sources, and with reference to recent developments in mesh shape composition techniques, the paper presents the resulting software implementation “Point-Cloud-Paint”: a tool that enables collage-based combinatorial experimentation with urban point-cloud data.
keywords simulation; representation; design methods; information processing
series ACADIA
email
last changed 2022/06/07 07:54

_id caadria2019_204
id caadria2019_204
authors Calixto, Victor, Gu, Ning and Celani, Gabriela
year 2019
title A Critical Framework of Smart Cities Development
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 685-694
doi https://doi.org/10.52842/conf.caadria.2019.2.685
summary This paper investigates through a review of the current literature on smart cities, reflecting different concepts across different political-social contexts, seeking to contribute to the establishment of a critical framework for smart cities development. The present work provides a review of the literature of 250 selected publications from four databases (Scielo, ScienceDirect, worldwide science, and Cumincad), covering the years from 2012 to 2018. Publications were categorised by the following steps: 3RC framework proposed by Kummitha and Crutzen (2017), the main political sectors of city planning, implementation strategies, computational techniques, and organisation rules. The information was analised graphically trying to identify tendencies along the time, and also, seeking to explore future possibilities for implementations in different political-social contexts. As a case of study, Australia and Brazil were compared using the proposed framework.
keywords smart city; smart cities; literature review
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaaderis2018_103
id ecaaderis2018_103
authors Davidová, Marie and Prokop, Šimon
year 2018
title TreeHugger - The Eco-Systemic Prototypical Urban Intervention
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 75-84
keywords The paper discusses co-design, development, production, application of TreeHugger (see Figure 1). The co-design among community and trans-disciplinary participants with different expertise required scope of media mix, switching between analogue, digital and back again. This involves different degrees of physical and digital 'GIGA-Mapping' (Sevaldson, 2011, 2015), 'Grasshopper3d' (Davidson, 2017) scripting and mix of digital and analogue fabrication to address the real life world. The critical participation of this 'Time-Based Design' (Sevaldson, 2004, 2005) process is the interaction of the prototype with eco-systemic agency of the adjacent environment - the eco-systemic performance. The TreeHugger is a responsive solid wood insect hotel, generating habitats and edible landscaping (Creasy, 2004) on bio-tope in city centre of Prague. To extend the impact, the code was uploaded for communities to download, local-specifically edit and apply worldwide. Thus, the fusion of discussed processes is multi-scaled and multi-layered, utilised in emerging design field: Systemic Approach to Architectural Performance.
series eCAADe
email
last changed 2018/05/29 14:33

_id ecaade2017_048
id ecaade2017_048
authors Dennemark, Martin, Schneider, Sven, Koenig, Reinhard, Abdulmawla, Abdulmalik and Donath, Dirk
year 2017
title Towards a modular design strategy for urban masterplanning - Experiences from a parametric urban design studio on emerging cities in Ethiopia
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 485-494
doi https://doi.org/10.52842/conf.ecaade.2017.1.485
summary In emerging countries there is a need for rapid urban planning, since they are confronted by unprecedented wave of urbanization. This need is even bigger since usually there is no adequate number of professional educated urban planners in these countries. Therefore, we investigate in this paper how to develop a set of methods that allow to generate urban fabric semi-automatically. The challenge is to come up with a generative planning model that adapts to multiple boundary conditions.Through a modular design strategy generative methods are applied by students in an urban design studio in order to combine them into more complex planning strategies for small cities in the emerging country of Ethiopia. The modular approach allows to break down planning into sub-issues to better deal with the overarching problem. For testing the implemented generative urban design strategies various cities are generated at different locations in Ethiopia with various topographic situations. Their underlying design strategies and modular approach are discussed in this paper.
keywords Urban Design; Planning Systems; Modules; Teaching; Emerging Country
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2017_110
id caadria2017_110
authors Di Mascio, Danilo
year 2017
title 3D Representations of Cities in Video Games as Designed Outcomes
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 33-42
doi https://doi.org/10.52842/conf.caadria.2017.033
summary The following paper proposes a way of reading and systematizing 3d representations of cities in video games. These representations are the result of a complex design problem not solely limited to 3d graphical representations. In fact, every 3d city is a designed artefact, an outcome of a design process that shares many common points with the architectural design process. Four main characteristics of 3d cities in videogames have been identified and described, namely: interaction/gameplay, narrative, architectural and urban representations, and graphical representations. The study of 3d cities in video games can also let us reflect on and improve our real cities. This piece of writing is part of a larger project that intends to investigate aspects of video games that can bring innovative approaches and theories into architecture and related fields. A further aim of the work is to raise interest and awareness on the topic and generate further discussions.
keywords 3d representations; 3d cities; video games; cities in video games; interaction
series CAADRIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadia19_90
id acadia19_90
authors Forward, Kristen; Taron, Joshua
year 2019
title Waste Ornament
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 90-99
doi https://doi.org/10.52842/conf.acadia.2019.090
summary The emergence of computational design and fabrication tools has escalated the potentials of architectural ornamentation to become innovative, beautiful, and highly sustainable. Historically, ornament has been known to express character and reveal relationships between materiality, technological advances, and societal evolution. But ornament rapidly declined in the late 1800s in large part due to mechanization and modernist ideals of uniform, unadorned façade components. However, ornamentation in architecture has recently reappeared—a development that can be linked closely to advancements in computational design and digital fabrication. While these advancements offer the ability to create expressive architecture, their potential contribution to the improvement of sustainable architecture has largely been overlooked (Augusti-Juan and Habert 2017). This paper provides a brief revisitation to the history of ornament and investigates the impact of computation and automation on the production of contemporary ornament. The paper also attempts to catalog examples of how designers have used computational technologies to address the growing criticality of environmental concerns. Moreover, the paper presents the Waste Ornament project, a research platform that critically examines how we can leverage technology to augment the visual and sustainable performance of facade ornamentation to reduce energy use in buildings. Three sub-projects are identified as territories for further research into sustainable ornamentation, ranging from material sourcing, to high-performance buildings, to the development of a systematic upcycling process that transforms old facades into new ones. While the examples are not exhaustive, they attempt to interlace the general ideas of waste and ornament by addressing particular issues that converge at building envelopes.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id cf2017_297
id cf2017_297
authors He, Yi; Schnabel, Marc Aurel; Chen, Rong; Wang, Ning
year 2017
title A Comprehensive Application of BIM Modelling for Semi-underground Public Architecture: A Study for Tiantian Square Complex, Wuhan, China
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 297-308.
summary The paper presents research on how Building Information Modelling (BIM) can be applied comprehensively throughout the design of an architectural project. A practical method based on BIM models that help to deal with multidisciplinary issues by integrating the design information from different sources, collaborators and project stages is formulated by adopting existing available tools. The ‘Tiantian Square’ building project in Wuhan, China combines a subway station with a commercial hug. According to the project’s size and complexity, our study focuses on the multiple cooperation of professionals from different backgrounds, including the departments of architectural design, structure (civil engineering), HVAC (Heating, Ventilation and Air Conditioning), water supply and drainage, and electrics and sustainable design. Our paper presents how the BIM model bridges between various simulation platforms through our technical system and management, including steps of transformation, simplification, analysis, reaction and improvement. Our research has helped to improve the overall efficiency and quality of the project. We generated a successful analysis-design approach for the initial design stages, which does not require in-depth analysis. It is a practical method to immediately evaluate the performance for each design alternative and provide guidelines for design modification. Finally, we discuss how the coordination of different department becomes a crucial factor as we look forward to a more open, communicative and inter-relational design and development process.
keywords BIM, Subway Complex, Simulation, Semi-Underground Architecture
series CAAD Futures
email
last changed 2017/12/01 14:38

_id cf2017_066
id cf2017_066
authors Jenney, Sarah Louise; Petzold, Frank
year 2017
title Question of Perspective: Information Visualisation in Games and its Possible Application in Planning Communication
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 66-83.
summary The densification of urban spaces is a major challenge for future cities. With new forms of online consultation, we observe a movement towards open government in urban planning. A stronger participation between a more diverse body of players in a networked environment, is unveiling various discrepancies in the understanding of projects by the different actors in planning, due to access to and the comprehension of planning information. To recognise and utilise the associated capabilities of current transformations, communication between the actors in planning and their sharing of knowledge is vitally important. Information visualisation is an essential form of communication, prompting this explorative paper in considering elements specific to games visualisation and their implications for urban planning. Based on a framework for information visualisation in games it was found that the specifications for actor groups in planning processes mirror the specifications specific to target audience groups in games.
keywords Gamification, Urban Design, Information Visualisation, Collaborative Design, Public Participation
series CAAD Futures
email
last changed 2017/12/01 14:37

_id caadria2017_051
id caadria2017_051
authors Liu, Yuezhong and Stouffs, Rudi
year 2017
title Familiar and Unfamiliar Data Sets in Sustainable Urban Planning
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 705-714
doi https://doi.org/10.52842/conf.caadria.2017.705
summary Achieving energy efficient urban planning requires a multi-disciplinary planning approach. The huge increase in data from sensors and simulations does not help to reduce the burden of planners. On the contrary, unfamiliar multi-disciplinary data sets can bring planners into a hopeless tangle. This paper applies semi-supervised learning methods to address such planning data issues. A case study is used to demonstrate the proposed method with respect to three performance issues: solar heat gains, natural ventilation and daylight. The result shows that the method addressing both familiar and unfamiliar data has the ability to guide the planner during the planning process.
keywords energy performance; S3VM; decision tree; familiar and unfamiliar.
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2017_228
id ecaade2017_228
authors Pihlajaniemi, Henrika, Luusua, Anna, Sarjanoja, Esa-Matti, Vääräniemi, Risto, Juntunen, Eveliina and Kourunen, Sini
year 2017
title SenCity City Monitor as a platform for user involvement, innovation and service development
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 561-570
doi https://doi.org/10.52842/conf.ecaade.2017.1.561
summary Urban dashboards visualize information about the measured performance, structure, patterns and trends of cities. This paper introduces a concept of urban dashboard as a platform for participation, research, and service development. We present and reflect the development process of the City Monitor, which is a test version of an urban dashboard for the pilot cities participating in the SenCity project. The paper describes and reflects on the concept, structure, and content of the City Monitor and its participatory and iterative development process, through a case study. The case study encompasses a pilot implementation of the dashboard concept in a context of a housing area in the Finnish city of Salo, where intelligent roadway lighting was tested.
keywords city dashboard; intelligent lighting; pilot; participation; simulation
series eCAADe
email
last changed 2022/06/07 08:00

_id acadia17_610
id acadia17_610
authors Thariyan, Elizabeth; Beorkrem, Christopher; Ellinger, Jefferson
year 2017
title Buildable Performance Envelopes: Optimizing Sustainable Design in a Pre-Design Phase
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 610- 619
doi https://doi.org/10.52842/conf.acadia.2017.610
summary The growing consciousness regarding ecologically conscious architecture mandates a deeper understanding of the strategies that may be adopted by designers towards achieving this goal. With the advent of building information modelling (BIM) and the associated paradigm shift in the design process, it has become increasingly possible to make informed decisions earlier on in the design process. Despite this advancement, the architectural realm continues to lack computational resources that are capable of providing formal guidelines, through a generative process, that serve as a starting point for sustainable design. Towards overcoming this limitation, this paper will describe a computational tool that generates buildable performance envelopes in response to aspects of a site that are influential in designing sustainably: climate and context. These envelopes are created in a generative manner through the utilization of a voxel (three-dimensional pixel) matrix, which continually updates itself based on formal elements created by the user. Facilitating the process of making ecologically conscious design decisions at the earliest stages of design, which is the primary goal of this tool, more substantially increases the achieved energy optimization. Illustrative building designs presented in the paper resulting from the testing of this tool in contrasting climate zones, such as Miami, Florida (ASHRAE Zone 01) and Aspen, Colorado (ASHRAE Zone 07), confirms the assertion that the performance envelopes generated with this tool serve only as a guideline for optimized sustainable design, and not as the final form of the building itself.
keywords design methods; information processing; BIM; simulation & optimization; form finding
series ACADIA
email
last changed 2022/06/07 07:58

_id cf2017_563
id cf2017_563
authors Varinlioglu, Guzden; Basarir, Lale; Genca, Ozgur; Vaizoglu, Zeynep
year 2017
title Challenges in Raising Digital Awareness in Architectural Curriculum
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 563.
summary The issue of bringing digital technology into architectural education necessitates a paradigmatic change. Achieving this change within a conventional framework presents a number of challenges. However, challenges are presented by the rapid change of technological tools and the frustration of updating the architectural scholarship, especially for schools with a traditional curriculum. This paper focuses on a case study of an update in the architectural curriculum for a CAD course. An approach to understanding the impact of digital tools and methods on digital awareness and a sustainable development of the students and pedagogy are presented, discussed, and demonstrated. Based on questionnaires, the students’ learning outcomes are evaluated.
keywords Digital Awareness, Architectural Curricula, Learning Outcome
series CAAD Futures
email
last changed 2017/12/01 14:38

_id caadria2017_009
id caadria2017_009
authors Yang, Xuyou, Koh, Shawn Jyh Shen, Loh, Paul and Leggett, David
year 2017
title Robotic Variable Fabric Formwork
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 873-882
doi https://doi.org/10.52842/conf.caadria.2017.873
summary Casting is one of the most widely used construction techniques. Complex geometries produced via computational design processes are not easily achievable through traditional rigid formwork and are subject to increase material waste. More suitable casting techniques are required to efficiently represent digital design output. This paper presents a variable fabric formwork developed to work in conjunction with a 6-axis robotic arm for casting doubly curved panels based on hyperbolic paraboloid geometry. The variable formwork is designed to be extendable in length and width so it is able to produce a wide range of outcome within a single formwork. The interface established in the workflow allows the physical formwork and digital design to influence each other. This variable fabric formwork reduces construction waste and is a more sustainable method of casting complex geometries.
keywords Digital fabrication; Robotic production; fabric casting
series CAADRIA
email
last changed 2022/06/07 07:57

_id lasg_whitepapers_2019_291
id lasg_whitepapers_2019_291
authors Sabin, Jenny
year 2019
title Lumen
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.291 - 318
summary This paper documents the computational design methods, digital fabrication strategies, and generative design process for [Lumen], winner of MoMA & MoMA PS1’s 2017 Young Architects Program. The project was installed in the courtyard at MoMA PS1 in Long Island City, New York, during the summer of 2017. Two lightweight 3D digitally knitted fabric canopy structures composed of responsive tubular and cellular components employ recycled textiles, photo-luminescent and solar active yarns that absorb and store UV energy, change color, and emit light. This environment offers spaces of respite, exchange, and engagement as a 150 x 75-foot misting system responds to visitors’ proximity, activating fabric stalactites that produce a refreshing micro-climate. Families of robotically prototyped and woven recycled spool chairs provide seating throughout the courtyard. The canopies are digitally fabricated with over 1,000,000 yards of high tech responsive yarn and are supported by three 40+ foot tensegrity towers and the surrounding matrix of courtyard walls. Material responses to sunlight as well as physical participation are integral parts of our exploratory approach to the 2017 YAP brief. The project is mathematically generated through form-finding simulations informed by the sun, site, materials, program, and the material morphology of knitted cellular components. Resisting a biomimetic approach, [Lumen] employs an analogic design process where complex material behavior and processes are integrated with personal engagement and diverse programs. The comprehensive installation was designed by Jenny Sabin Studio and fabricated by Shima Seiki WHOLEGARMENT, Jacobsson Carruthers, and Dazian with structural engineering by Arup and lighting by Focus Lighting.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 23HOMELOGIN (you are user _anon_746754 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002