CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 3 of 3

_id ecaade2018_310
id ecaade2018_310
authors Jabi, Wassim, Aish, Robert, Lannon, Simon, Chatzivasileiadi, Aikaterini and Wardhana, Nicholas Mario
year 2018
title Topologic - A toolkit for spatial and topological modelling
doi https://doi.org/10.52842/conf.ecaade.2018.2.449
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 449-458
summary This paper describes non-manifold topology (NMT) as it relates to the field of architecture and presents Topologic, an open-source software modelling library enabling hierarchical and topological representations of architectural spaces, buildings and artefacts through NMT. Topologic is designed as a core library and additional plugins to visual data flow programming (VDFP) software. The software architecture and class hierarchy are explained and two domain-specific demonstrative tools (TopologicEnergy and TopologicStructure) are presented to illustrate how third-party software developers could use Topologic to build their own solutions. The paper concludes with a reflection on the benefits and limitations of NMT in the design and simulation workflows and outlines future work.
keywords Non-manifold topology; Visual data flow programming; Building performance simulation; Structural analysis; Computational design; Building information modelling
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2018_187
id ecaade2018_187
authors Chatzivasileiadi, Aikaterini, Hosney Lila, Anas M., Lannon, Simon and Jabi, Wassim
year 2018
title The Effect of Reducing Geometry Complexity on Energy Simulation Results
doi https://doi.org/10.52842/conf.ecaade.2018.2.559
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 559-568
summary Accuracy and time are metrics inherently associated with the design process and the energy performance simulation of buildings. The accurate representation of the building is an essential requirement for energy analysis, which comes with the expense of time; however, this is in contrast with the need to minimise the simulation time in order to make it compatible with design times. This is a particularly interesting aspect in the case of complex geometries, which are often simplified for use in building energy performance simulation. The effects of this simplification on the accuracy of simulation results are not usually reported. This paper explored these effects through a systematic analysis of several test cases. The results indicate that the use of orthogonal prisms as simplified surrogates for buildings with complex shapes presents a worst-case scenario that should be avoided where possible. A significant reduction of geometry complexity by at least 50% can also be achieved with negligible effects on simulation results, while minimising the time requirements. Accuracy, however, deteriorates rapidly below a critical threshold.
keywords Building performance simulation; Energy analysis; Geometry simplification
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2018_221
id ecaade2018_221
authors Veliz Reyes, Alejandro, Gomaa, Mohamed, Chatzivasileiadi, Aikaterini, Jabi, Wassim and Wardhana, Nicholas Mario
year 2018
title Computing Craft - Early stage development of a robotically-supported 3D printing system for cob structures
doi https://doi.org/10.52842/conf.ecaade.2018.1.791
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 791-800
summary This paper focuses on an ongoing investigation exploring fabrication procedures and methodologies for robotically supported 3D printing utilising cob and other clay-based sustainable building materials, and is part of an ongoing collaboration between Cardiff University and the University of Plymouth. The methodology is that of a prototype development process within the framework of a feasibility studies call supported by the "Connected Everything: Industrial Systems in the Digital Age" EPSRC (Engineering and Physical Sciences Research Council) network. This project expects to not only reveal technological and design opportunities for 3D printed cob structures, but more broadly to engage with vernacular practice through digital means. As a result, this paper expects to contribute to the discipline by providing a framework engaging with digital practice as a way to bridge the knowledge gap between digitally-driven and vernacular modes of knowledge production, dissemination and representation.
keywords cob construction; robotics; 3D printing; vernacular architecture
series eCAADe
email
last changed 2022/06/07 07:58

No more hits.

HOMELOGIN (you are user _anon_182191 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002