CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 4 of 4

_id ecaade2020_121
id ecaade2020_121
authors Trossman Haifler, Yaala and Fisher-Gewirtzman, Dafna
year 2020
title Urban Well-Being in Dense Cities - The influence of densification strategies, experiment in virtual reality
doi https://doi.org/10.52842/conf.ecaade.2020.1.323
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 323-332
summary Urban morphology significantly impacts resident's well-being. This study examines the impact of urban environments on the sense of well-being, using virtual reality as a research environment. Most of the world's population already live in urban localities; and it is expected that in two decades, more than 70% of the total population of the planet will be city dwellers(UN 2018). This study examines the impact of various urban configurations on dwellers well-being. Participants were presented with simulated pedestrian movement through 24 virtual urban environments. The environments differed by density level, spatial configurations, vegetation, and commerce. Participants assessed each alternative through structured questionnaires. It has been found that the density and presence of vegetation and commerce in the urban area have a significant impact on the subject's well-being in urban environments. extreme levels of densification have a negative effect on subjects' feelings, but vegetation and commerce, especially at the high levels of density, can improve them. In this research we established the framework for planning principles that can improve urban densification processes. An understanding of the wellbeing of urban dwellers, and the parameters that can influence this, will help urban designers and planners in creating better urbanized future environments.
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2018_165
id ecaade2018_165
authors Fisher-Gewirtzman, Dafna and Bruchim, Elad
year 2018
title Considering Variant Movement Velocities on the 3D Dynamic Visibility Analysis (DVA) - Simulating the perception of urban users: pedestrians, cyclists and car drivers.
doi https://doi.org/10.52842/conf.ecaade.2018.2.569
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 569-576
summary The objective of this research project is to simulate and evaluate the effect of movement velocity and cognitive abilities on the visual perception of three groups of urban users: pedestrians, cyclists and car drivers.The simulation and analysis is based on the 3D Dynamic Visual Analysis (DVA) (Fisher-Gewirtzman, 2017). This visibility analysis model was developed in the Rhinoceros and Grasshopper software environments and is based on the conceptual model presented in Fisher-Gewirtzman (2016): a 3D Line of Sight (LOS) visibility analysis, taking into account the integrated effect of the 3D geometry of the environment and the variant elements of the view (such as the sky, trees and vegetation, buildings and building types, roads, water etc.). In this paper, the current advancement of the existing model considers the visual perception of human users employing three types of movement in the urban environment--pedestrians, cyclists and drivers--is explored.We expect this research project to exemplify the contribution of such a quantification and evaluation model to evaluating existing urban structures, and for supporting future human perception-based urban design processes.
keywords visibility analysis and simulation; predicting perception of space; movement in the urban environment; pedestrians; cyclists; car drivers
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2018_176
id ecaade2018_176
authors Fisher-Gewirtzman, Dafna and Polak, Nir
year 2018
title Integrating Crowdsourcing & Gamification in an Automatic Architectural Synthesis Process
doi https://doi.org/10.52842/conf.ecaade.2018.1.439
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 439-444
summary This work covers the methodological approach that is used to gather information from the wisdom of crowd, to be utilized in a machine learning process for the automatic generation of minimal apartment units. The flexibility in the synthesis process enables the generation of apartment units that seem to be random and some are unsuitable for dwelling. Thus, the synthesis process is required to classify units based on their suitability. The classification is deduced from opinions of human participants on previously generated units. As the definition of "suitability" may be subjective, this work offers a crowdsourcing method in order to reach a large number of participants, that as a whole would allow to produce an objective classification. Gaming elements have been adopted to make the crowdsourcing process more intuitive and inviting for external participants.
keywords crowdsourcing and gamification; urban density; optimization; automated architecture synthesis; minimum apartments; visual openness
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2018_107
id ecaade2018_107
authors Sopher, Hadas, Fisher-Gewirtzman, Dafna and Kalay, Yehuda E.
year 2018
title Use of Immersive Virtual Environment in the Design Studio - An Assessment Model
doi https://doi.org/10.52842/conf.ecaade.2018.2.843
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 843-852
summary The Architectural Studio is dedicated to teaching students the design process. Students learn by developing an architectural artefact in increasing complexity. They do so through three phases: structuring the problem, developing design proposals and converging decisions into a detailed solution state. This process has been taking place mostly in traditional physical settings. The advent of new technologies, most notably Immersive Virtual Environments (IVEs), introduces a new kind of setting that holds promise to influence the architectural learning process. This paper describes a model we have developed to assess the impact of IVE on this learning process. To do so, we have developed a method for coding learners' design decisions and the way they are developed, accounting for their educational settings - whether a traditional studio classroom or an IVE. The method consists of units we term Knowledge Construction Activities (KCAs) and reveals the relationship between the learning process and the educational setting in which it takes place, through time. The results revealed that the IVE supported extensive design development, especially during the second and third learning phases, calling for an informed integration of IVEs in future Studio syllabi.
keywords Design Studio; Knowledge Construction Activities; Immersion; Design process; Design analysis
series eCAADe
email
last changed 2022/06/07 07:56

No more hits.

HOMELOGIN (you are user _anon_47222 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002