CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 118

_id caadria2018_290
id caadria2018_290
authors Wang, Zhenyu, Shi, Jia, Yu, Chuanfei and Gao, Guoyuan
year 2018
title Automatic Design of Main Pedestrian Entrance of Building Site Based on Machine Learning - A Case Study of Museums in China's Urban Environment
doi https://doi.org/10.52842/conf.caadria.2018.2.227
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 227-235
summary The main pedestrian entrance of the building site has a direct influence on the use of the buildings, so the selection of the main pedestrian entrance is very important in the process of architectural design. The correct selection of the main pedestrian entrance of building site depends on the experience of designers and environment data collected by designers, the process is time consuming and inefficient, especially when the building site located in complex urban environment. In order to improve the efficiency of design process, we used online map to collect museums information in China as training samples, and constructing artificial neural networks to predict the direction of the main pedestrian entrance. After the training, we get the prediction model with 79% prediction accuracy. Although the accuracy still need to be improved, it creates a new approach to analysis the main pedestrian entrance of the site and worth further researching.
keywords Artificial Neural Network (ANN); Main Pedestrian Entrance of Building Site; Automatic Design
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2018_101
id caadria2018_101
authors Tablada, Abel, Chaplin, Ian, Huang, Huajing, Lau, Siu-Kit, Yuan, Chao and Lau, Stephen Siu-Yu
year 2018
title Simulation Algorithm for the Integration of Solar and Farming Systems on Tropical Façades
doi https://doi.org/10.52842/conf.caadria.2018.2.123
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 123-132
summary The study focuses on the creation of an algorithm in Grasshopper using Ladybug and Honeybee plugins to simulate a large number of façade design variants with the integration of photovoltaic (PV) panels as shading devices and farming systems. The algorithm aims to facilitate such simulations in a semi-automated way complying with standard practise in a relative short time. Simulation results are then extracted and assessed using an analytical optimization method.
keywords Key words: grasshopper; ladybug; honeybee; BIPV; vertical farming; productive facades
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2018_188
id caadria2018_188
authors Yu, K. Daniel, Haeusler, M. Hank, Fabbri, Alessandra and Simons, Katrina
year 2018
title BiCycle Pathway Generation Through a Weighted Digital Slime Mold Algorithm via Topographical Analysis
doi https://doi.org/10.52842/conf.caadria.2018.2.381
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 381-390
summary Cities are growing into larger suburbias which increasingly become dependent on cars as the primary mode of transport. Cycling is an alternative transport mode, but topography can often turn daily transport into cardiovascular exercise - not always a desirable outcome. Addressing this, planners can design cycle pathways that coincide with the landscape by planning the shortest path between two points, whilst considering the need to minimise effort (muscle power) to reach the destination. Using a Slime Mold algorithm the paper discusses possibilities of cycle pathway generation which utilises topographic gradients as the initial framework for the growth. The cycle path optimises the amount of effort required to travel between specified points, and adhere to a set of rules predefined by the user (e.g avoid occupied cadastral). A vector analysis determines the gradient sizes that define areas of the topography which are too steep for the algorithm to grow. The algorithm can be observed to generate cycling infrastructure that is both reflective of the environment and the amenities of humans. This investigation, its proposed hypothesis, methodology, implications, significance, and evaluation are presented in the paper.
keywords cycle pathway; slime mold; infrastructure generation; topography analysis; route choice
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2018_025
id caadria2018_025
authors Khoo, Chin Koi, Wang, Rui, Globa, Anastasia and Moloney, Jules
year 2018
title Prototyping a Human-Building Interface with Multiple Mobile Robots
doi https://doi.org/10.52842/conf.caadria.2018.1.525
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 525-534
summary Recent advances in miniature mobile robotic research have generated possibilities and potentials in a range of fields such as the military, rescue operations, logistics and education. Within architecture, especially in responsive architecture and architectural interface disciplines, there has been minimal uptake of this technology, and so its full potential and implications have not been fully explored. In this paper, we propose a design exploration of a human-building interface (HBI) with multiple mobile robots serving as 'physical pixels', which investigates the latent possibilities of public interactive displays and media screens, potentially provoking interaction with existing built environments. The outcomes of this paper include an early-stage design study of an HBI prototype, PixelFace, which has been developed with multiple spherical mobile robots and an existing building structure. An early physical implementation of the HBI as an interactive public display with real-time physical movement that encourages playful interaction is also included.
keywords Human-Computer Interaction; Human-Building Interface; Mobile Robots; Responsive Architecture
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2018_083
id caadria2018_083
authors Luo, Dan, Wang, Jinsong and Xu, Weiguo
year 2018
title Robotic Automatic Generation of Performance Model for Non-Uniform Linear Material via Deep Learning
doi https://doi.org/10.52842/conf.caadria.2018.1.039
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 39-48
summary In the following research, a systematic approach is developed to generate an experiment-based performance model that computes and customizes properties of non-uniform linear materials to accommodate the form of designated curve under bending and natural force. In this case, the test subject is an elastomer strip of non-uniform sections. A novel solution is provided to obtain sufficient training data required for deep learning with an automatic material testing mechanism combining robotic arm automation and image recognition. The collected training data are fed into a deep combination of neural networks to generate a material performance model. Unlike most traditional performance models that are only able to simulate the final form from the properties and initial conditions of the given materials, the trained neural network offers a two-way performance model that is also able to compute appropriate material properties of non-uniform materials from target curves. This network achieves complex forms with minimal and effective programmed materials with complicated nonlinear properties and behaving under natural forces.
keywords Material performance model; Deep Learning; Robotic automation; Material computation; Neural network
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2018_232
id caadria2018_232
authors Poustinchi, Ebrahim, Wang, Shengmian and Luhan, Gregory
year 2018
title No Keyboard, No Mouse - Hybrid Digital-Analog Hardware Design for Enhancing Design UI and UX
doi https://doi.org/10.52842/conf.caadria.2018.1.535
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 535-544
summary This paper presents a mixed-method research design investigation that integrates a Hybrid Digital-Analog Software-Hardware protocol referred to as the No Keyboard, No Mouse (NK-NM) platform. The NK-NM process uses both theoretical and applied research mechanisms to measure its influence on architectural design decision-making, knowledge exchange, student learning, aesthetics, and user experience in the context of an undergraduate architectural design studio. Observing a recognized gap in the current digital architectural design environments this paper details how the NK-NM protocol bridges this gap through an instructed hierarchical design process, customizable physical interface, and iterative simulation-based feedback loop.
keywords Digital Hardware; Digital Design; Pedagogy; Human-computer Interaction; Physical computation
series CAADRIA
email
last changed 2022/06/07 08:00

_id caadria2018_076
id caadria2018_076
authors Sun, Chengyu, Wang, Yuze, Zheng, Zhaohua, Sun, Tongyu and Ruiz, Laura
year 2018
title MR. SAP: An Assistant Co-working with Architects in a Tangible-Model-Based Design Process
doi https://doi.org/10.52842/conf.caadria.2018.1.555
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 555-564
summary To avoid interruption on architects' tangible-object-based design process, MR.SAP is being developed to co-work with architects as a cost-acceptable personal solution with tangible user interface, which can scan the tangible object, analyze its digital counterpart, and prompt visualized suggestions upon it through a portable projector in real time. It extends the user's capabilities of form perception, real time calculation, and operational positioning upon tangible objects, which can better serve his subjective aesthetic taste and design aims.
keywords mixed reality; projector and camera system; manual craft; co-working
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2018_167
id caadria2018_167
authors Sun, Chengyu, Zheng, Zhaohua, Wang, Yuze, Sun, Tongyu and Ruiz, Laura
year 2018
title A Topological-Rule-Based Algorithm Converting a Point Cloud into a Key-Feature Mesh
doi https://doi.org/10.52842/conf.caadria.2018.2.597
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 597-606
summary As a bridge between tangible models and digital counter parts in almost all the architectural applications with Tangible User Interface, converting point clouds scanned from objects into light meshes with key-features are essential in the human-computer interaction. In this paper, an algorithm based on topological rules is introduced, which focuses on computing a topological-right mesh from a point cloud scanned by a low-cost device in real time. Mesh faces are extracted by analyzing distribution of the normal vectors of neighbor point clusters and mesh vertexes are calculated according to the topological conditions of local surrounding faces. Such a final key-feature mesh has the largest geometric similarity and least vertexes to the tangible model at an architectural cognitive level, whose dimensional accuracy is at an acceptable level concerning the low-cost device used.
keywords Tangible model; Point cloud; Mesh simplification; Human Computer Interaction
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2018_140
id caadria2018_140
authors Wang, Chun-Yung and Hou, June-Hao
year 2018
title Analysis and Applications of Theo Jansen's Linkage Mechanism - Theo Jansen's Linkage Mechanism on Kinetic Architecture
doi https://doi.org/10.52842/conf.caadria.2018.2.359
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 359-368
summary The research is analysis the mechanism structure of the Theo Jansen's linkage. Studied how the linkage works. How does the crank work to make footsteps cycle. In this research studied the dynamic and kinetic mode of this structure and changing the length of the linkages. Make the Theo Jansen's mechanism that have more possibility of kinetic movement that is different from the previous walking mode. Using Rhinoceros's Grasshopper computer software to build a simulation system. To test and generate the possibility of the linkage's shape. Also simulate the how the linkage will be to run specific routes. The system can be made by single modularization which can do multiple used of kinetic system. The proposed deformation of the linkage and dynamic system which include the building facade changes pattern, openings, switching lighting system, and facade shading system can run with mechanism.
keywords Theo Jansen’s Mechanism; Kinetic architecture; mechanism linkage
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2018_199
id caadria2018_199
authors Wang, Likai, Janssen, Patrick and Ji, Guohua
year 2018
title Efficiency versus Effectiveness - A Study on Constraint Handling for Architectural Evolutionary Design
doi https://doi.org/10.52842/conf.caadria.2018.1.163
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 163-172
summary This paper investigates the impacts of constraint handling on the evolutionary designs in terms of time efficiency and evolutionary effectiveness. To analyse this issue systematically, three generative models with different constraint handling strategies were constructed. The locality of the models and the associated positive and negative impacts on evolutionary designs were analysed.
keywords constraint handling; locality; evolutionary design; time efficiency; evolutionary effectiveness
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2018_049
id caadria2018_049
authors Xu, Tongda, Wang, Dinglu, Yang, Mingyan, You, Xiaohui and Huang, Weixin
year 2018
title An Evolving Built Environment Prototype - A Prototype of Adaptive Built Environment Interacting with Electroencephalogram Supported by Reinforcement Learning
doi https://doi.org/10.52842/conf.caadria.2018.2.207
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 207-215
summary This paper proposes an environment prototype learning from people's Electroencephalogram (EEG) feedback in real-time. Instead of the widely adopted supervised learning method, a recently published affordable reinforcement learning model (PPO) is adopted to avoid bias from designers and to base the interaction on the subject and intelligent agent rather than between the designer and subject. In this way, development of interaction method towards a specific target is substantially accelerated. The target of this prototype is to keep the subject's alpha wave stable or decline, which indicated a more calming state, by intelligent decision of illumination state according to subject's EEG. The result is promising, a decent trained model could be gained within 500,000 steps facing this mid-complex environment. The target of keeping the alpha wave of subjects on a low or stable level purely by decision from computer agents is successfully reached.
keywords Brain–computer interface; Reinforcement learning; Adaptive environment; Electroencephalogram; Mindfulness training
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2018_273
id caadria2018_273
authors Yuan, Philip F., Wang, Xiang and Wang, Xiang
year 2018
title Cellular Cavity Structure and its Application on a Long-Span Form-Found Shell Design
doi https://doi.org/10.52842/conf.caadria.2018.1.297
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 297-306
summary This paper shows a design and building application of a novel structure concept which is presented and developed by the author. The form-found pavilion demonstrates the validity of the design methodology and the related technical details of the design and fabrication process in an arbitrary design domain. The large pavilion (7m*6m*2.5m) with only 1mm paperboard also shows the great potentials of the thin sheet materials to be used in shell structure designs. The structural concept is based on the spatial tessellation of shell spaces into groups of cellular cavities. The cellular cavity is mainly composed of two curved membranes and the circumferential ribs. Both global and local membrane actions can be activated by the use of materials as thin as 1mm. Based on the structural analysis of the foregoing pavilion, the structural behavior is discussed in detail with a physical compressive test of the different group of cellular cavities. The assembly process of the pavilion is discussed with a prototype in full scale. As a successful efficient paper-shell structure, this pavilion demonstrates the structural concept and could inspire the potentials of thin materials for future shell designs.
keywords Cellular Cavity Structure; Shell Structure; Thin Paperboard; Large Pavilion Design; Parametric Design Method
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2018_304
id caadria2018_304
authors Amtsberg, Felix and Raspall, Felix
year 2018
title Bamboo?
doi https://doi.org/10.52842/conf.caadria.2018.1.245
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 245-254
summary The presented paper discusses the combination of cutting edge technology (i.e. 3D-pinting) and raw natural grown resources (i.e. bamboo) to develop resource efficient load carrying truss structures in architectural scale. Via visual sensing the individual material properties of various bamboo poles are analyzed and directly used to inform the digital model. Comparing load carrying capacity of the bamboo pole and structural requirements of the design, the poles are placed and the connections designed. Conventional 3D-pinters produce the nodes and connectors and enable to merge natural and "digital" materiality.
keywords visual sensing; digital fabrication; material individuality; 3d-printing; bamboo
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_235
id caadria2018_235
authors Araullo, Rebekah
year 2018
title 3D Growth Morphology - Tectonics of Custom Shapes in Reciprocal Systems
doi https://doi.org/10.52842/conf.caadria.2018.1.307
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 307-316
summary Traditionally, Reciprocal Frame (RF) structures feature the use of linear materials such as rods, beams and bars. Their potential in varied curvature and doubly-curved forms illustrate ongoing advances in computation and fabrication. Flexible to using small available materials that span large areas, RF systems appeal as a popular research topic to demonstrate tectonic and engineering feats. However, RF using planar materials is a non-traditional application and is not widely explored in research. This paper discusses RF research projects that feature planar custom shapes with unique 3D tectonic capabilities. Their aesthetic properties and structural opportunities will be discussed and evaluated. The objective of this paper is to examine the use of planar materials and highlight the potential of irregular 3D reciprocal systems. The use of custom shapes in a reciprocal system and their unique growth morphologies presents a novel direction in the practice of reciprocal systems.
keywords Reciprocal Frames; Spaceframes; Computational Design; Digital Fabrication; RF Growth Morphology
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_029
id caadria2018_029
authors Ayoub, Mohammed
year 2018
title Adaptive Façades:An Evaluation of Cellular Automata Controlled Dynamic Shading System Using New Hourly-Based Metrics
doi https://doi.org/10.52842/conf.caadria.2018.2.083
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 83-92
summary This research explores utilizing Cellular Automata patterns as climate-adaptive dynamic shading systems to mitigate the undesirable impacts by excessive solar penetration in cooling-dominant climates. The methodological procedure is realized through two main phases. The first evaluates all 256 Elementary Cellular Automata possible rules to elect the ones with good visual and random patterns, to ensure an equitable distribution of the natural daylight in internal spaces. Based on the newly developed hourly-based metrics, simulations are conducted in the second phase to evaluate the Cellular Automata controlled dynamic shadings performance, and formalize the adaptive façade variation logic that maximizes daylighting and minimizes energy demand.
keywords Adaptive Façade; Dynamic Shading; Cellular Automata; Hourly-Based Metric; Performance Evaluation
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_033
id caadria2018_033
authors Bai, Nan and Huang, Weixin
year 2018
title Quantitative Analysis on Architects Using Culturomics - Pattern Study of Prizker Winners Based on Google N-gram Data
doi https://doi.org/10.52842/conf.caadria.2018.2.257
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 257-266
summary Quantitative studies using the corpus Google Ngram, namely Culturomics, have been analyzing the implicit patterns of culture changes. Being the top-standard prize in the field of Architecture since 1979, the Pritzker Prize has been increasingly diversified in the recent years. This study intends to reveal the implicit pattern of Pritzker Winners using the method of Culturomics, based on the corpus of Google Ngram to reveal the relationship of the sign of their fame and the fact of prize-winning. 48 architects including 32 awarded and 16 promising are analyzed in the printed corpus of English language between 1900 and 2008. Multiple regression models and multiple imputation methods are used during the data processing. Self-Organizing Map is used to define clusters among the awarded and promising architects. Six main clusters are detected, forming a 3×2 network of fame patterns. Most promising architects can be told from the clustering, according to their similarity to the more typical prize winners. The method of Culturomics could expand the sight of architecture study, giving more possibilities to reveal the implicit patterns of the existing empirical world.
keywords Culturomics; Google Ngram; Pritzker Prize; Fame Pattern; Self-Organizing Map
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_342
id caadria2018_342
authors Bhagat, Nikita, Rybkowski, Zofia, Kalantar, Negar, Dixit, Manish, Bryant, John and Mansoori, Maryam
year 2018
title Modulating Natural Ventilation to Enhance Resilience Through Modifying Nozzle Profiles - Exploring Rapid Prototyping Through 3D-Printing
doi https://doi.org/10.52842/conf.caadria.2018.2.185
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 185-194
summary The study aimed to develop and test an environmentally friendly, easily deployable, and affordable solution for socio-economically challenged populations of the world. 3D-printing (additive manufacturing) was used as a rapid prototyping tool to develop and test a façade system that would modulate air velocity through modifying nozzle profiles to utilize natural cross ventilation techniques in order to improve human comfort in buildings. Constrained by seasonal weather and interior partitions which block the ability to cross ventilate, buildings can be equipped to perform at reduced energy loads and improved internal human comfort by using a façade system composed of retractable nozzles developed through this empirical research. This paper outlines the various stages of development and results obtained from physically testing different profiles of nozzle-forms that would populate the façade system. In addition to optimizing nozzle profiles, the team investigated the potential of collapsible tube systems to permit precise placement of natural ventilation directed at occupants of the built space.
keywords Natural ventilation; Wind velocity; Rapid prototyping; 3D-printing; Nozzle profiles
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2018_125
id caadria2018_125
authors Bungbrakearti, Narissa, Cooper-Wooley, Ben, Odolphi, Jorke, Doherty, Ben, Fabbri, Alessandra, Gardner, Nicole and Haeusler, M. Hank
year 2018
title HOLOSYNC - A Comparative Study on Mixed Reality and Contemporary Communication Methods in a Building Design Context
doi https://doi.org/10.52842/conf.caadria.2018.1.401
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 401-410
summary The integration of technology into the design process has enabled us to communicate through various modes of virtuality, while more traditional face-to-face collaborations are becoming less frequent, specifically for large scale companies. Both modes of communication have benefits and disadvantages - virtual communication enables us to connect over large distances, however can often lead to miscommunication, while face-to-face communication builds stronger relationship, however may be problematic for geographically dispersed teams. Mixed Reality is argued to be a hybrid of face-to-face and virtual communication, and is yet to be integrated into the building design process. Despite its current limitations, such as field of view, Mixed Reality is an effective tool that generates high levels of nonverbal and verbal communication, and encourages a high and equal level of participation in comparison to virtual and face-to-face communication. Being a powerful communication tool for complex visualisations, it would be best implemented in the later stages of the building design process where teams can present designs to clients or where multiple designers can collaborate over final details.
keywords Mixed Reality; Communication; Hololens; Collaboration; Virtual
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_278
id caadria2018_278
authors Caetano, In?s, Ilunga, Guilherme, Belém, Catarina, Aguiar, Rita, Feist, Sofia, Bastos, Francisco and Leit?o, António
year 2018
title Case Studies on the Integration of Algorithmic Design Processes in Traditional Design Workflows
doi https://doi.org/10.52842/conf.caadria.2018.1.111
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 111-120
summary Algorithmic design processes have enormous potential for architecture. Even though some large design offices have already incorporated such processes in their workflow, so far, these have not been seriously considered by the large majority of traditional small-scale studios. Nevertheless, as the integration of algorithmic techniques inside architectural studios does not require mastering programming skills, but rather taking advantage of a collaborative design process, small design studios are therefore able of using such strategies within their workflow. This paper discusses a series of challenges presented by one of these studios, where we had to integrate algorithmic design processes with the studio's traditional workflow.
keywords Collaborative design; Algorithmic design; Design strategies; Design workflow processes
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_086
id caadria2018_086
authors Castelo Branco, Renata and Leit?o, António
year 2018
title Algorithmic Architectural Visualization
doi https://doi.org/10.52842/conf.caadria.2018.2.557
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 557-566
summary Digitally-generated visualizations, such as renders or movies, are, nowadays, commonly used as representation methods for architectural creations. This occurs not only in final stages of the process, with the goal of selling the product's image, but also in midst creation process to express concepts and ideas. Presently, the spread of parametric and algorithmic approaches to design creates a problem for visualization, as it enables the almost effortless change of 3D models, thus requiring repeated visualization efforts to keep up with the changes applied to the design. To solve this, we propose extending the algorithmic design approach to also include the high-level description of architectural image creation. The methodology, Algorithmic Architectural Visualization (AAV), also contemplates the required preparation settings for the visualization process, and includes possible visualization productions inspired by film techniques.
keywords Algorithmic Design; Architectural Visualization; Render; Film Grammar
series CAADRIA
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5HOMELOGIN (you are user _anon_656813 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002