CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 117

_id caadria2018_365
id caadria2018_365
authors Ham, Jeremy J.
year 2018
title Exploring the Intersection of Music and Architecture Through Spatial Improvisation
doi https://doi.org/10.52842/conf.caadria.2018.1.121
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 121-130
summary Creative practice design research brings forth rich opportunities for the exploration of inter-domain connections between music and architecture. Through inter-disciplinary creative practice explorative project work founded on a methodology of improvisation on the digital drum kit, two stages of design research project work are outlined. In the first stage, a language of polyrhythmic drumming is parametrically spatialized as a reflective lens on an extant creative practice. From here, a new form of 'Spatial Improvisation' is explored, where conceptual spatial forms are generated from improvisations on the digital drum kit. This new musico-spatial design practice involves mediating a spatio-temporal-dynamical 'Y-Condition (Martin, 1994)' wherein temporal and dynamic design decisions translate from the musical domain into the spatial domain through 'spatial thinking-in-action'.
keywords Music and Architecture; Design Research ; Spatial Improvisation; Design Process; Parametric Digital Design
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2018_125
id caadria2018_125
authors Bungbrakearti, Narissa, Cooper-Wooley, Ben, Odolphi, Jorke, Doherty, Ben, Fabbri, Alessandra, Gardner, Nicole and Haeusler, M. Hank
year 2018
title HOLOSYNC - A Comparative Study on Mixed Reality and Contemporary Communication Methods in a Building Design Context
doi https://doi.org/10.52842/conf.caadria.2018.1.401
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 401-410
summary The integration of technology into the design process has enabled us to communicate through various modes of virtuality, while more traditional face-to-face collaborations are becoming less frequent, specifically for large scale companies. Both modes of communication have benefits and disadvantages - virtual communication enables us to connect over large distances, however can often lead to miscommunication, while face-to-face communication builds stronger relationship, however may be problematic for geographically dispersed teams. Mixed Reality is argued to be a hybrid of face-to-face and virtual communication, and is yet to be integrated into the building design process. Despite its current limitations, such as field of view, Mixed Reality is an effective tool that generates high levels of nonverbal and verbal communication, and encourages a high and equal level of participation in comparison to virtual and face-to-face communication. Being a powerful communication tool for complex visualisations, it would be best implemented in the later stages of the building design process where teams can present designs to clients or where multiple designers can collaborate over final details.
keywords Mixed Reality; Communication; Hololens; Collaboration; Virtual
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_278
id caadria2018_278
authors Caetano, In?s, Ilunga, Guilherme, Belém, Catarina, Aguiar, Rita, Feist, Sofia, Bastos, Francisco and Leit?o, António
year 2018
title Case Studies on the Integration of Algorithmic Design Processes in Traditional Design Workflows
doi https://doi.org/10.52842/conf.caadria.2018.1.111
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 111-120
summary Algorithmic design processes have enormous potential for architecture. Even though some large design offices have already incorporated such processes in their workflow, so far, these have not been seriously considered by the large majority of traditional small-scale studios. Nevertheless, as the integration of algorithmic techniques inside architectural studios does not require mastering programming skills, but rather taking advantage of a collaborative design process, small design studios are therefore able of using such strategies within their workflow. This paper discusses a series of challenges presented by one of these studios, where we had to integrate algorithmic design processes with the studio's traditional workflow.
keywords Collaborative design; Algorithmic design; Design strategies; Design workflow processes
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_156
id caadria2018_156
authors Chee, Ryan Wei Shen, Tan, Wei Lin, Goh, Wei Hern, Amtsberg, Felix and Dritsas, Stylianos
year 2018
title Locally Differentiated Concrete by Digitally Controlled Injection
doi https://doi.org/10.52842/conf.caadria.2018.1.195
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 195-204
summary This paper presents a digital fabrication process for concrete which may be deployed for surface texturing, volumetric modification of material properties and 2D and 3D forming. We process concrete in its slurry state by locally injecting chemicals in solution which cause vigorous effervescent reaction to take place. By precise and controlled dispensing, using computer software and robotic hardware developed, we produce local differentiation in the finally set concrete artefacts. Our work contributes to additive and subtractive 3D manufacturing as well as functionally graded materials fabrication.
keywords Digital Fabrication; Additive Manufacturing; Functionally Graded Materials; Architectural Robotics.
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2018_301
id caadria2018_301
authors Fereos, Pavlos, Tsiliakos, Marios and Jaschke, Clara
year 2018
title Spaceship Architecture - A Sci-Fi Pedagogical Approach to Design Computation
doi https://doi.org/10.52842/conf.caadria.2018.1.081
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 81-90
summary The analysis of make-belief drawings and models of Sci-Fi spaceships and architecture, leaves architects usually in absence of interior, material or program information. The spatial depth of sci-fi digital or physical models is virtually non-existent and unresolved. This discrepancy within sci-fi scenarios inspired the development of an integrated teaching methodology within design studios, with the academic objective to utilize computational methods for analysis, reproduction and eventually composition, while assessing its capacity to achieve a successful assimilation of design computation in the curriculum. The Spaceship Architecture Design Studio at University of Innsbruck's Institute for Experimental Architecture.hochbau follows a procedural approach in which the design objective is not predefined. Yet, it aims to be 'outside of this world' as a sci-fi architectural quality-enriched result of our reality, via a design oriented course with immersive computational strategies.
keywords pedagogy; computation; sci-fi; academia; teaching
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2018_162
id caadria2018_162
authors Hawton, Dominic, Cooper-Wooley, Ben, Odolphi, Jorke, Doherty, Ben, Fabbri, Alessandra, Gardner, Nicole and Haeusler, M. Hank
year 2018
title Shared Immersive Environments for Parametric Model Manipulation - Evaluating a Workflow for Parametric Model Manipulation from Within Immersive Virtual Environments
doi https://doi.org/10.52842/conf.caadria.2018.1.483
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 483-492
summary Virtual reality (VR) and augmented reality (AR) provide designers with new visual mediums through which to communicate their designs. There is great potential for these mediums to positively augment current visual communication methods by improving remote collaboration. Enabling designers to interact with familiar computational tools through external virtual interfaces would allow them to both calibrate design parameters and visualise parametric outcomes from within the same immersive virtual environment. The current research outlines a workflow for parametric manipulation and mesh replication between immersive applications developed in the Unity game engine and McNeel's Grasshopper plugin. This paper serves as a foundation for future research into integrating design tools with external VR and AR applications in an effort of enhancing remote collaborative designs.
keywords Augmented Reality; Virtual Reality; Parametric Design; Procedural; Grasshopper
series CAADRIA
email
last changed 2022/06/07 07:49

_id caadria2018_287
id caadria2018_287
authors Herr, Christiane M., Lombardi, Davide and Galobardes, Isaac
year 2018
title Parametric Design of Sculptural Fibre Reinforced Concrete Facade Components
doi https://doi.org/10.52842/conf.caadria.2018.2.319
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 319-328
summary This paper presents the first stage of a study examining the digital design and fabrication of a parametrically defined sculptural concrete façade element employing fibre reinforced concrete. On the background of a literature review of related precedent studies, the paper extends the scope of previous studies by offering a detailed insight into the process of integrating architectural considerations with material properties of fibre reinforced concrete, detailed structural analysis and construction constraints. The paper offers technical details with a focus on material to similar on-going studies.
keywords parametric design; digital fabrication; digital prototyping; fibre reinforced concrete; prefabrication
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2018_126
id caadria2018_126
authors Khean, Nariddh, Kim, Lucas, Martinez, Jorge, Doherty, Ben, Fabbri, Alessandra, Gardner, Nicole and Haeusler, M. Hank
year 2018
title The Introspection of Deep Neural Networks - Towards Illuminating the Black Box - Training Architects Machine Learning via Grasshopper Definitions
doi https://doi.org/10.52842/conf.caadria.2018.2.237
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 237-246
summary Machine learning is yet to make a significant impact in the field of architecture and design. However, with the combination of artificial neural networks, a biologically inspired machine learning paradigm, and deep learning, a hierarchical subsystem of machine learning, the predictive capabilities of machine learning processes could prove a valuable tool for designers. Yet, the inherent knowledge gap between the fields of architecture and computer science has meant the complexity of machine learning, and thus its potential value and applications in the design of the built environment remain little understood. To bridge this knowledge gap, this paper describes the development of a learning tool directed at architects and designers to better understand the inner workings of machine learning. Within the parametric modelling environment of Grasshopper, this research develops a framework to express the mathematic and programmatic operations of neural networks in a visual scripting language. This offers a way to segment and parametrise each neural network operation into a basic expression. Unpacking the complexities of machine learning in an intermediary software environment such as Grasshopper intends to foster the broader adoption of artificial intelligence in architecture.
keywords machine learning; neural network; action research; supervised learning; education
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2018_122
id caadria2018_122
authors Leung, Emily, Asher, Rob, Butler, Andrew, Doherty, Ben, Fabbri, Alessandra, Gardner, Nicole and Haeusler, M. Hank
year 2018
title Redback BIM - Developing 'De-Localised' Open-Source Architecture-Centric Tools
doi https://doi.org/10.52842/conf.caadria.2018.2.021
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 21-30
summary Emerging technologies that use data have contributed to the success of communication all over the world. Social media and gaming industries have already taken advantage of the web to provide synchronous communication and updated information. Conversely, existing methods of communication within the AEC industry require multiple platforms, such as emails and file sharing services in conjunction with 3D Modelling software, to inform changes made by stakeholders, resulting in file duplication and limited accessibility to the latest version, while augmenting existing practice's inefficiency. As communication is critical to the success of a project and should be enhanced, Redback BIM promises to establish a workflow for a dynamic platform, while achieving similar results to that of a 3D modelling program hosted on the web. Using existing open-source web development software, multiple users will be able to collaboratively organise and synchronise changes made to the design scheme in real-time. Features such as this would enable more fluid communication between multiple stakeholders within the life of a project.
keywords De-localised Workspaces; Web-based Software Platforms; Data; Open-source; Collaboration
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2018_018
id caadria2018_018
authors Lin, Yuming and Huang, Weixin
year 2018
title Social Behavior Analysis in Innovation Incubator Based on Wi-Fi Data - A Case Study on Yan Jing Lane Community
doi https://doi.org/10.52842/conf.caadria.2018.2.197
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 197-206
summary Innovation incubator is an emerging kind of office space which focuses on promoting social interaction in the space. From the perspective of environmental behavior, the complex relationship between a particular space form and the social interactions is well worth exploring. Based on Wi-Fi positioning data, this paper examined the spatial and temporal behavior in innovation incubators. Using the interdisciplinary social networks analysis, this paper further analyzed the social interactions in this space, mining out social structures such as gathering and community, and analyzing the relationship between these structures and spaces. The result shows that human behavior in innovation incubators has some interesting characteristics, and the social structures are closely linked with the functional area of innovation incubator. This paper provides a new perspective and introduces interdisciplinary approaches to study the social behaviors in a particular space form, which has great potential in future research.
keywords environmental behavior study; social behavior analysis; innovation incubator; Wi-Fi IPS; social network
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2018_210
id caadria2018_210
authors Lin, Yuqiong, Zheng, Jingyun, Yao, Jiawei and Yuan, Philip F.
year 2018
title Research on Physical Wind Tunnel and Dynamic Model Based Building Morphology Generation Method
doi https://doi.org/10.52842/conf.caadria.2018.2.165
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 165-174
summary The change of the building morphology directly affects the surrounding environment, while the evaluation of these environment data becomes the main basis for the genetic iterations of the building morphology. Indeed, due to the complexity of the outdoor natural ventilation, multiple factors in the site could be the main reasons for the change of air flow. Thus, the architect is suggested to take the wind environment as the main morphology generation factor in the early stage of the building design. Based on the research results of 2017 DigitalFUTURE Wind Tunnel Visualization Workshop, a novel self-form-finding method in design infancy has been proposed. This method uses Arduino to carry out the dynamic design of the building model, which can not only connect the sensor to monitor the wind environment data, but also contribute the building model to correlate with the wind environment data in real time. The integration of the Arduino platform and the physical wind tunnel can create the possibility of continuous and real-time physical changes, data collection and wind environment simulation, using quantitative environmental factors to control building morphology, and finally achieve the harmony among the building, environment and human.
keywords Physical wind tunnel; dynamic model; building morphology generation; environmental performance design; wind environment visualization
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2018_306
id caadria2018_306
authors Liu, Jie, Ma, Hongtao, Tang, Ning, Xu, Weiguo and Luo, Dan
year 2018
title Kinetair: Interactive Stairs with Multiple Functions
doi https://doi.org/10.52842/conf.caadria.2018.2.369
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 369-378
summary Kinetair is an interactive stairs prototype which could change its appearance according to the surrounding conditions, providing a diversity of functions, such as stairs, exhibition walls, furniture and so on. This research is based on the Interactive Architecture theory, integrating with digital fabrication technology. This paper will illustrate the origin of the concept, the concept development process, the fabrication process and the various possible application of Kinetair. This experiment evokes us to rethink the fundamental meanings of the architecture components in a brand new perspective, and stimulates designers to explore the new features of conventional constructions with cutting-edge technologies.
keywords interactive stairs; stair design; kinetic structure; dynamic design; adaptive form
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2018_322
id caadria2018_322
authors Lu, Hangxin, Gu, Jiaxi, Li, Jin, Lu, Yao, Müller, Johannes, Wei, Wenwen and Schmitt, Gerhard
year 2018
title Evaluating Urban Design Ideas from Citizens from Crowdsourcing and Participatory Design
doi https://doi.org/10.52842/conf.caadria.2018.2.297
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 297-306
summary Participatory planning aims at engaging multiple stakeholders including citizens in various stages of planning projects. Adopting participatory design approach in the early stage of planning project facilitates the ideation process of citizens. We have implemented a participatory design study during the 2017 Beijing Design Week and have conducted an interactive design project called "Design your perfect Dashilar: You Place it!". Participants including local residents and visitors were asked to redesign the Yangmeizhu street, a historical street located in Dashilar area by rearranging the buildings of residential, commercial, administration, and cultural functionalities. Apart from using digital design tools, questionnaires, interviews, and sensor network were applied to collect personal preferences data. Computational approaches were used to extract features from designs and personal preferences. In this paper, we illustrate the implementation of the participatory design and the possible applications by combining with crowdsourcing. Participatory design data and citizens profiles with personal preferences were analysed and their correlations were computed. By using crowdsourcing and participatory design, this study shows that the digitalization of participatory design with data science perspective can indicate the implicit requirements, needs and design ideas of citizens.
keywords Participatory design; Crowdsourcing; Human computation; Citizen Design Science; Human Computer Interaction
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2018_083
id caadria2018_083
authors Luo, Dan, Wang, Jinsong and Xu, Weiguo
year 2018
title Robotic Automatic Generation of Performance Model for Non-Uniform Linear Material via Deep Learning
doi https://doi.org/10.52842/conf.caadria.2018.1.039
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 39-48
summary In the following research, a systematic approach is developed to generate an experiment-based performance model that computes and customizes properties of non-uniform linear materials to accommodate the form of designated curve under bending and natural force. In this case, the test subject is an elastomer strip of non-uniform sections. A novel solution is provided to obtain sufficient training data required for deep learning with an automatic material testing mechanism combining robotic arm automation and image recognition. The collected training data are fed into a deep combination of neural networks to generate a material performance model. Unlike most traditional performance models that are only able to simulate the final form from the properties and initial conditions of the given materials, the trained neural network offers a two-way performance model that is also able to compute appropriate material properties of non-uniform materials from target curves. This network achieves complex forms with minimal and effective programmed materials with complicated nonlinear properties and behaving under natural forces.
keywords Material performance model; Deep Learning; Robotic automation; Material computation; Neural network
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2018_284
id caadria2018_284
authors Mühlhaus, Michael, Jenney, Sarah Louise and Petzold, Frank
year 2018
title Take a Look Through My Eyes: An Augmented Reality Planning Communication System
doi https://doi.org/10.52842/conf.caadria.2018.1.379
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 379-388
summary Participation and communication in urban planning, visualisation, spatial perception, and motivation through gamification are discussed and system requirements derived. An augmented reality multi-client communication prototype is described improving transparency and utilising local expertise in planning processes. The selection, processing and visualisation of planning data takes individual stakeholders knowledge and skill levels, cultural backgrounds, and interests into account to facilitate understanding through moderation and the ability to change perspective.
keywords Augmented Reality; Gameification; Communication; Public Participation; Visualisation
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2018_212
id caadria2018_212
authors Tan, Ying Yi and Lee, Tat Lin
year 2018
title The Flexible Textile Mesh - Manufacture of Curved Perforated Cladding Panels
doi https://doi.org/10.52842/conf.caadria.2018.2.349
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 349-358
summary This paper presents a new approach to manufacture lightweight perforated panels using textile reinforced composites (TRCs) for curved building designs. It explores the design variation of a graded mesh as a knitted textile formwork created by CNC knitting technology that can be edge-shaped by bendable elements and sprayed with polymer resin to form the composite panel.
keywords Textile-reinforced composites; Knitted textiles; Perforated Panels
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2018_209
id caadria2018_209
authors Yao, Jiawei, Lin, Yuqiong, Zhao, Yao, Yan, Chao, Li, Changlin and Yuan, Philip F.
year 2018
title Augmented Reality Technology based Wind Environment Visualization
doi https://doi.org/10.52842/conf.caadria.2018.1.369
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 369-377
summary Considering the outdoor environment at the initial stage of design process plays a significant role on future building performance. Augmented Reality (AR) technology applied in this research can integrate real world building morphology information and virtual world ventilation information seamlessly that rapidly and directly provides designers information for observation and evaluation. During the case study of "2017 Shanghai DigitalFUTURE" summer workshop, a research on augmented reality technology based wind environment visualization was carried on. The achievement with an application software not only showed the geometric information of the real world objects (such as buildings), but also the virtual wind environment has displayed. Thus, these two kinds of information can complement and superimpose each other. This AR technology based software brings multiple synthetic together, which can (1) visualize the air flow around buildings that provides designers rapid and direct information for evaluation; (2) deal with wind-environment-related data quantitatively and present in an intuitive, easy-to-interpret graphical way; and (3) be further developed as a visualization system based on built-in environments in the future, which contributes to rapid evaluation of a series of programs at the beginning of the building design.
keywords Environment visualization; Augmented reality technology; Fast response; Outdoor ventilation
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2018_188
id caadria2018_188
authors Yu, K. Daniel, Haeusler, M. Hank, Fabbri, Alessandra and Simons, Katrina
year 2018
title BiCycle Pathway Generation Through a Weighted Digital Slime Mold Algorithm via Topographical Analysis
doi https://doi.org/10.52842/conf.caadria.2018.2.381
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 381-390
summary Cities are growing into larger suburbias which increasingly become dependent on cars as the primary mode of transport. Cycling is an alternative transport mode, but topography can often turn daily transport into cardiovascular exercise - not always a desirable outcome. Addressing this, planners can design cycle pathways that coincide with the landscape by planning the shortest path between two points, whilst considering the need to minimise effort (muscle power) to reach the destination. Using a Slime Mold algorithm the paper discusses possibilities of cycle pathway generation which utilises topographic gradients as the initial framework for the growth. The cycle path optimises the amount of effort required to travel between specified points, and adhere to a set of rules predefined by the user (e.g avoid occupied cadastral). A vector analysis determines the gradient sizes that define areas of the topography which are too steep for the algorithm to grow. The algorithm can be observed to generate cycling infrastructure that is both reflective of the environment and the amenities of humans. This investigation, its proposed hypothesis, methodology, implications, significance, and evaluation are presented in the paper.
keywords cycle pathway; slime mold; infrastructure generation; topography analysis; route choice
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2018_217
id caadria2018_217
authors Zhang, Le-Min, Jeng, Tay-Sheng and Zhang, Ruo-Xi
year 2018
title Integration of Virtual Reality, 3-D Eye-Tracking, and Protocol Analysis for Re-Designing Street Space
doi https://doi.org/10.52842/conf.caadria.2018.1.431
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 431-440
summary The objective of this paper is to develop an eye-tracking technology combined with a virtual reality system for an experimental study of an historical street design. Using protocol analysis, a set of design objects, parameters, and subjects are randomly selected for evaluation of the virtual street space of an ancient city. 3-D point-cloud data of spatial behaviors are tracked and analyzed. It is concluded that people with different cultural backgrounds each have a considerably different perception of the street space's characteristics. The methodology described in this paper can be used for spatial design of urban space in the future.
keywords Virtual Reality; Eye-Tracking; Protocol Analysis; Street Space
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2018_304
id caadria2018_304
authors Amtsberg, Felix and Raspall, Felix
year 2018
title Bamboo?
doi https://doi.org/10.52842/conf.caadria.2018.1.245
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 245-254
summary The presented paper discusses the combination of cutting edge technology (i.e. 3D-pinting) and raw natural grown resources (i.e. bamboo) to develop resource efficient load carrying truss structures in architectural scale. Via visual sensing the individual material properties of various bamboo poles are analyzed and directly used to inform the digital model. Comparing load carrying capacity of the bamboo pole and structural requirements of the design, the poles are placed and the connections designed. Conventional 3D-pinters produce the nodes and connectors and enable to merge natural and "digital" materiality.
keywords visual sensing; digital fabrication; material individuality; 3d-printing; bamboo
series CAADRIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5HOMELOGIN (you are user _anon_389547 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002