CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 15 of 15

_id caadria2018_161
id caadria2018_161
authors Huang, Xiaoran, White, Marcus and Burry, Mark
year 2018
title Design Globally, Immerse Locally - A Synthetic Design Approach by Integrating Agent Based Modelling with Virtual Reality
doi https://doi.org/10.52842/conf.caadria.2018.1.473
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 473-482
summary The last three decades have witnessed the explosion of technology and its impact on the architecture discipline which has drastically changed the methods of design. New techniques such as Agent-based modeling (ABM) and Virtual Reality (VR) have been widely implemented in architectural and urban design domains, yet the potential integration between these two methods remains arguably unexploited. The investigation in this paper aims to probe the following questions: How can architects and urban designers be informed more comprehensively by melding ABM and VR techniques at the preliminary/conceptual design stage? Which platform is considered more appropriate to facilitate a user-friendly system and reduces the steep learning curve? And what are the potential benefits of this approach in architectural education, particularly for the design studio environment? With those questions, we proposed a prototype in Unity, a multi-platform development tool that originated from the game industry, to simulate and visualize pedestrian behaviors in urban environments with immersive design experience and tested it in a scenario-based case study. This approach has also been further tested in an architectural design studio, demonstrating its technical feasibility as well as the potential contributions to the pedagogy.
keywords Agent based modelling; Virtual Reality; Urban Design
series CAADRIA
email
last changed 2022/06/07 07:49

_id acadia23_v1_196
id acadia23_v1_196
authors Bao, Ding Wen; Yan, Xin; Min Xie, Yi
year 2023
title Intelligent Form
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 196-201.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id caadria2018_125
id caadria2018_125
authors Bungbrakearti, Narissa, Cooper-Wooley, Ben, Odolphi, Jorke, Doherty, Ben, Fabbri, Alessandra, Gardner, Nicole and Haeusler, M. Hank
year 2018
title HOLOSYNC - A Comparative Study on Mixed Reality and Contemporary Communication Methods in a Building Design Context
doi https://doi.org/10.52842/conf.caadria.2018.1.401
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 401-410
summary The integration of technology into the design process has enabled us to communicate through various modes of virtuality, while more traditional face-to-face collaborations are becoming less frequent, specifically for large scale companies. Both modes of communication have benefits and disadvantages - virtual communication enables us to connect over large distances, however can often lead to miscommunication, while face-to-face communication builds stronger relationship, however may be problematic for geographically dispersed teams. Mixed Reality is argued to be a hybrid of face-to-face and virtual communication, and is yet to be integrated into the building design process. Despite its current limitations, such as field of view, Mixed Reality is an effective tool that generates high levels of nonverbal and verbal communication, and encourages a high and equal level of participation in comparison to virtual and face-to-face communication. Being a powerful communication tool for complex visualisations, it would be best implemented in the later stages of the building design process where teams can present designs to clients or where multiple designers can collaborate over final details.
keywords Mixed Reality; Communication; Hololens; Collaboration; Virtual
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_278
id caadria2018_278
authors Caetano, In?s, Ilunga, Guilherme, Belém, Catarina, Aguiar, Rita, Feist, Sofia, Bastos, Francisco and Leit?o, António
year 2018
title Case Studies on the Integration of Algorithmic Design Processes in Traditional Design Workflows
doi https://doi.org/10.52842/conf.caadria.2018.1.111
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 111-120
summary Algorithmic design processes have enormous potential for architecture. Even though some large design offices have already incorporated such processes in their workflow, so far, these have not been seriously considered by the large majority of traditional small-scale studios. Nevertheless, as the integration of algorithmic techniques inside architectural studios does not require mastering programming skills, but rather taking advantage of a collaborative design process, small design studios are therefore able of using such strategies within their workflow. This paper discusses a series of challenges presented by one of these studios, where we had to integrate algorithmic design processes with the studio's traditional workflow.
keywords Collaborative design; Algorithmic design; Design strategies; Design workflow processes
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_301
id caadria2018_301
authors Fereos, Pavlos, Tsiliakos, Marios and Jaschke, Clara
year 2018
title Spaceship Architecture - A Sci-Fi Pedagogical Approach to Design Computation
doi https://doi.org/10.52842/conf.caadria.2018.1.081
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 81-90
summary The analysis of make-belief drawings and models of Sci-Fi spaceships and architecture, leaves architects usually in absence of interior, material or program information. The spatial depth of sci-fi digital or physical models is virtually non-existent and unresolved. This discrepancy within sci-fi scenarios inspired the development of an integrated teaching methodology within design studios, with the academic objective to utilize computational methods for analysis, reproduction and eventually composition, while assessing its capacity to achieve a successful assimilation of design computation in the curriculum. The Spaceship Architecture Design Studio at University of Innsbruck's Institute for Experimental Architecture.hochbau follows a procedural approach in which the design objective is not predefined. Yet, it aims to be 'outside of this world' as a sci-fi architectural quality-enriched result of our reality, via a design oriented course with immersive computational strategies.
keywords pedagogy; computation; sci-fi; academia; teaching
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2018_162
id caadria2018_162
authors Hawton, Dominic, Cooper-Wooley, Ben, Odolphi, Jorke, Doherty, Ben, Fabbri, Alessandra, Gardner, Nicole and Haeusler, M. Hank
year 2018
title Shared Immersive Environments for Parametric Model Manipulation - Evaluating a Workflow for Parametric Model Manipulation from Within Immersive Virtual Environments
doi https://doi.org/10.52842/conf.caadria.2018.1.483
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 483-492
summary Virtual reality (VR) and augmented reality (AR) provide designers with new visual mediums through which to communicate their designs. There is great potential for these mediums to positively augment current visual communication methods by improving remote collaboration. Enabling designers to interact with familiar computational tools through external virtual interfaces would allow them to both calibrate design parameters and visualise parametric outcomes from within the same immersive virtual environment. The current research outlines a workflow for parametric manipulation and mesh replication between immersive applications developed in the Unity game engine and McNeel's Grasshopper plugin. This paper serves as a foundation for future research into integrating design tools with external VR and AR applications in an effort of enhancing remote collaborative designs.
keywords Augmented Reality; Virtual Reality; Parametric Design; Procedural; Grasshopper
series CAADRIA
email
last changed 2022/06/07 07:49

_id caadria2018_287
id caadria2018_287
authors Herr, Christiane M., Lombardi, Davide and Galobardes, Isaac
year 2018
title Parametric Design of Sculptural Fibre Reinforced Concrete Facade Components
doi https://doi.org/10.52842/conf.caadria.2018.2.319
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 319-328
summary This paper presents the first stage of a study examining the digital design and fabrication of a parametrically defined sculptural concrete façade element employing fibre reinforced concrete. On the background of a literature review of related precedent studies, the paper extends the scope of previous studies by offering a detailed insight into the process of integrating architectural considerations with material properties of fibre reinforced concrete, detailed structural analysis and construction constraints. The paper offers technical details with a focus on material to similar on-going studies.
keywords parametric design; digital fabrication; digital prototyping; fibre reinforced concrete; prefabrication
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia23_v1_180
id acadia23_v1_180
authors Huang, Lee-Su; Spaw, Gregory
year 2023
title InterLoop
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 180-187.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id caadria2018_126
id caadria2018_126
authors Khean, Nariddh, Kim, Lucas, Martinez, Jorge, Doherty, Ben, Fabbri, Alessandra, Gardner, Nicole and Haeusler, M. Hank
year 2018
title The Introspection of Deep Neural Networks - Towards Illuminating the Black Box - Training Architects Machine Learning via Grasshopper Definitions
doi https://doi.org/10.52842/conf.caadria.2018.2.237
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 237-246
summary Machine learning is yet to make a significant impact in the field of architecture and design. However, with the combination of artificial neural networks, a biologically inspired machine learning paradigm, and deep learning, a hierarchical subsystem of machine learning, the predictive capabilities of machine learning processes could prove a valuable tool for designers. Yet, the inherent knowledge gap between the fields of architecture and computer science has meant the complexity of machine learning, and thus its potential value and applications in the design of the built environment remain little understood. To bridge this knowledge gap, this paper describes the development of a learning tool directed at architects and designers to better understand the inner workings of machine learning. Within the parametric modelling environment of Grasshopper, this research develops a framework to express the mathematic and programmatic operations of neural networks in a visual scripting language. This offers a way to segment and parametrise each neural network operation into a basic expression. Unpacking the complexities of machine learning in an intermediary software environment such as Grasshopper intends to foster the broader adoption of artificial intelligence in architecture.
keywords machine learning; neural network; action research; supervised learning; education
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2018_122
id caadria2018_122
authors Leung, Emily, Asher, Rob, Butler, Andrew, Doherty, Ben, Fabbri, Alessandra, Gardner, Nicole and Haeusler, M. Hank
year 2018
title Redback BIM - Developing 'De-Localised' Open-Source Architecture-Centric Tools
doi https://doi.org/10.52842/conf.caadria.2018.2.021
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 21-30
summary Emerging technologies that use data have contributed to the success of communication all over the world. Social media and gaming industries have already taken advantage of the web to provide synchronous communication and updated information. Conversely, existing methods of communication within the AEC industry require multiple platforms, such as emails and file sharing services in conjunction with 3D Modelling software, to inform changes made by stakeholders, resulting in file duplication and limited accessibility to the latest version, while augmenting existing practice's inefficiency. As communication is critical to the success of a project and should be enhanced, Redback BIM promises to establish a workflow for a dynamic platform, while achieving similar results to that of a 3D modelling program hosted on the web. Using existing open-source web development software, multiple users will be able to collaboratively organise and synchronise changes made to the design scheme in real-time. Features such as this would enable more fluid communication between multiple stakeholders within the life of a project.
keywords De-localised Workspaces; Web-based Software Platforms; Data; Open-source; Collaboration
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2018_322
id caadria2018_322
authors Lu, Hangxin, Gu, Jiaxi, Li, Jin, Lu, Yao, Müller, Johannes, Wei, Wenwen and Schmitt, Gerhard
year 2018
title Evaluating Urban Design Ideas from Citizens from Crowdsourcing and Participatory Design
doi https://doi.org/10.52842/conf.caadria.2018.2.297
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 297-306
summary Participatory planning aims at engaging multiple stakeholders including citizens in various stages of planning projects. Adopting participatory design approach in the early stage of planning project facilitates the ideation process of citizens. We have implemented a participatory design study during the 2017 Beijing Design Week and have conducted an interactive design project called "Design your perfect Dashilar: You Place it!". Participants including local residents and visitors were asked to redesign the Yangmeizhu street, a historical street located in Dashilar area by rearranging the buildings of residential, commercial, administration, and cultural functionalities. Apart from using digital design tools, questionnaires, interviews, and sensor network were applied to collect personal preferences data. Computational approaches were used to extract features from designs and personal preferences. In this paper, we illustrate the implementation of the participatory design and the possible applications by combining with crowdsourcing. Participatory design data and citizens profiles with personal preferences were analysed and their correlations were computed. By using crowdsourcing and participatory design, this study shows that the digitalization of participatory design with data science perspective can indicate the implicit requirements, needs and design ideas of citizens.
keywords Participatory design; Crowdsourcing; Human computation; Citizen Design Science; Human Computer Interaction
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2018_284
id caadria2018_284
authors Mühlhaus, Michael, Jenney, Sarah Louise and Petzold, Frank
year 2018
title Take a Look Through My Eyes: An Augmented Reality Planning Communication System
doi https://doi.org/10.52842/conf.caadria.2018.1.379
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 379-388
summary Participation and communication in urban planning, visualisation, spatial perception, and motivation through gamification are discussed and system requirements derived. An augmented reality multi-client communication prototype is described improving transparency and utilising local expertise in planning processes. The selection, processing and visualisation of planning data takes individual stakeholders knowledge and skill levels, cultural backgrounds, and interests into account to facilitate understanding through moderation and the ability to change perspective.
keywords Augmented Reality; Gameification; Communication; Public Participation; Visualisation
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2018_188
id caadria2018_188
authors Yu, K. Daniel, Haeusler, M. Hank, Fabbri, Alessandra and Simons, Katrina
year 2018
title BiCycle Pathway Generation Through a Weighted Digital Slime Mold Algorithm via Topographical Analysis
doi https://doi.org/10.52842/conf.caadria.2018.2.381
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 381-390
summary Cities are growing into larger suburbias which increasingly become dependent on cars as the primary mode of transport. Cycling is an alternative transport mode, but topography can often turn daily transport into cardiovascular exercise - not always a desirable outcome. Addressing this, planners can design cycle pathways that coincide with the landscape by planning the shortest path between two points, whilst considering the need to minimise effort (muscle power) to reach the destination. Using a Slime Mold algorithm the paper discusses possibilities of cycle pathway generation which utilises topographic gradients as the initial framework for the growth. The cycle path optimises the amount of effort required to travel between specified points, and adhere to a set of rules predefined by the user (e.g avoid occupied cadastral). A vector analysis determines the gradient sizes that define areas of the topography which are too steep for the algorithm to grow. The algorithm can be observed to generate cycling infrastructure that is both reflective of the environment and the amenities of humans. This investigation, its proposed hypothesis, methodology, implications, significance, and evaluation are presented in the paper.
keywords cycle pathway; slime mold; infrastructure generation; topography analysis; route choice
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2018_332
id caadria2018_332
authors van Ameijde, Jeroen and Song, Yutao
year 2018
title Data-Driven Urban Porosity - Incorporating Parameters of Public Space into a Generative Urban Design Process
doi https://doi.org/10.52842/conf.caadria.2018.1.173
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 173-182
summary This paper presents an urban design project for a new city district, using generative design processes in architecture and urbanism developed over several years within academic research and practice work. The paper discusses the opportunities and challenges found when using a data-driven urban design methodology in relation to the complex logistical, social and economical networks of new urban centers.
keywords Design Methods and Information Processing; Generative System; Simulation & Optimization; Urban Planning and Design; Public Space Design
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2018_049
id caadria2018_049
authors Xu, Tongda, Wang, Dinglu, Yang, Mingyan, You, Xiaohui and Huang, Weixin
year 2018
title An Evolving Built Environment Prototype - A Prototype of Adaptive Built Environment Interacting with Electroencephalogram Supported by Reinforcement Learning
doi https://doi.org/10.52842/conf.caadria.2018.2.207
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 207-215
summary This paper proposes an environment prototype learning from people's Electroencephalogram (EEG) feedback in real-time. Instead of the widely adopted supervised learning method, a recently published affordable reinforcement learning model (PPO) is adopted to avoid bias from designers and to base the interaction on the subject and intelligent agent rather than between the designer and subject. In this way, development of interaction method towards a specific target is substantially accelerated. The target of this prototype is to keep the subject's alpha wave stable or decline, which indicated a more calming state, by intelligent decision of illumination state according to subject's EEG. The result is promising, a decent trained model could be gained within 500,000 steps facing this mid-complex environment. The target of keeping the alpha wave of subjects on a low or stable level purely by decision from computer agents is successfully reached.
keywords Brain–computer interface; Reinforcement learning; Adaptive environment; Electroencephalogram; Mindfulness training
series CAADRIA
email
last changed 2022/06/07 07:57

No more hits.

HOMELOGIN (you are user _anon_153118 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002