CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 118

_id caadria2018_210
id caadria2018_210
authors Lin, Yuqiong, Zheng, Jingyun, Yao, Jiawei and Yuan, Philip F.
year 2018
title Research on Physical Wind Tunnel and Dynamic Model Based Building Morphology Generation Method
doi https://doi.org/10.52842/conf.caadria.2018.2.165
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 165-174
summary The change of the building morphology directly affects the surrounding environment, while the evaluation of these environment data becomes the main basis for the genetic iterations of the building morphology. Indeed, due to the complexity of the outdoor natural ventilation, multiple factors in the site could be the main reasons for the change of air flow. Thus, the architect is suggested to take the wind environment as the main morphology generation factor in the early stage of the building design. Based on the research results of 2017 DigitalFUTURE Wind Tunnel Visualization Workshop, a novel self-form-finding method in design infancy has been proposed. This method uses Arduino to carry out the dynamic design of the building model, which can not only connect the sensor to monitor the wind environment data, but also contribute the building model to correlate with the wind environment data in real time. The integration of the Arduino platform and the physical wind tunnel can create the possibility of continuous and real-time physical changes, data collection and wind environment simulation, using quantitative environmental factors to control building morphology, and finally achieve the harmony among the building, environment and human.
keywords Physical wind tunnel; dynamic model; building morphology generation; environmental performance design; wind environment visualization
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2018_076
id caadria2018_076
authors Sun, Chengyu, Wang, Yuze, Zheng, Zhaohua, Sun, Tongyu and Ruiz, Laura
year 2018
title MR. SAP: An Assistant Co-working with Architects in a Tangible-Model-Based Design Process
doi https://doi.org/10.52842/conf.caadria.2018.1.555
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 555-564
summary To avoid interruption on architects' tangible-object-based design process, MR.SAP is being developed to co-work with architects as a cost-acceptable personal solution with tangible user interface, which can scan the tangible object, analyze its digital counterpart, and prompt visualized suggestions upon it through a portable projector in real time. It extends the user's capabilities of form perception, real time calculation, and operational positioning upon tangible objects, which can better serve his subjective aesthetic taste and design aims.
keywords mixed reality; projector and camera system; manual craft; co-working
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2018_167
id caadria2018_167
authors Sun, Chengyu, Zheng, Zhaohua, Wang, Yuze, Sun, Tongyu and Ruiz, Laura
year 2018
title A Topological-Rule-Based Algorithm Converting a Point Cloud into a Key-Feature Mesh
doi https://doi.org/10.52842/conf.caadria.2018.2.597
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 597-606
summary As a bridge between tangible models and digital counter parts in almost all the architectural applications with Tangible User Interface, converting point clouds scanned from objects into light meshes with key-features are essential in the human-computer interaction. In this paper, an algorithm based on topological rules is introduced, which focuses on computing a topological-right mesh from a point cloud scanned by a low-cost device in real time. Mesh faces are extracted by analyzing distribution of the normal vectors of neighbor point clusters and mesh vertexes are calculated according to the topological conditions of local surrounding faces. Such a final key-feature mesh has the largest geometric similarity and least vertexes to the tangible model at an architectural cognitive level, whose dimensional accuracy is at an acceptable level concerning the low-cost device used.
keywords Tangible model; Point cloud; Mesh simplification; Human Computer Interaction
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2018_304
id caadria2018_304
authors Amtsberg, Felix and Raspall, Felix
year 2018
title Bamboo?
doi https://doi.org/10.52842/conf.caadria.2018.1.245
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 245-254
summary The presented paper discusses the combination of cutting edge technology (i.e. 3D-pinting) and raw natural grown resources (i.e. bamboo) to develop resource efficient load carrying truss structures in architectural scale. Via visual sensing the individual material properties of various bamboo poles are analyzed and directly used to inform the digital model. Comparing load carrying capacity of the bamboo pole and structural requirements of the design, the poles are placed and the connections designed. Conventional 3D-pinters produce the nodes and connectors and enable to merge natural and "digital" materiality.
keywords visual sensing; digital fabrication; material individuality; 3d-printing; bamboo
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_235
id caadria2018_235
authors Araullo, Rebekah
year 2018
title 3D Growth Morphology - Tectonics of Custom Shapes in Reciprocal Systems
doi https://doi.org/10.52842/conf.caadria.2018.1.307
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 307-316
summary Traditionally, Reciprocal Frame (RF) structures feature the use of linear materials such as rods, beams and bars. Their potential in varied curvature and doubly-curved forms illustrate ongoing advances in computation and fabrication. Flexible to using small available materials that span large areas, RF systems appeal as a popular research topic to demonstrate tectonic and engineering feats. However, RF using planar materials is a non-traditional application and is not widely explored in research. This paper discusses RF research projects that feature planar custom shapes with unique 3D tectonic capabilities. Their aesthetic properties and structural opportunities will be discussed and evaluated. The objective of this paper is to examine the use of planar materials and highlight the potential of irregular 3D reciprocal systems. The use of custom shapes in a reciprocal system and their unique growth morphologies presents a novel direction in the practice of reciprocal systems.
keywords Reciprocal Frames; Spaceframes; Computational Design; Digital Fabrication; RF Growth Morphology
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_029
id caadria2018_029
authors Ayoub, Mohammed
year 2018
title Adaptive Façades:An Evaluation of Cellular Automata Controlled Dynamic Shading System Using New Hourly-Based Metrics
doi https://doi.org/10.52842/conf.caadria.2018.2.083
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 83-92
summary This research explores utilizing Cellular Automata patterns as climate-adaptive dynamic shading systems to mitigate the undesirable impacts by excessive solar penetration in cooling-dominant climates. The methodological procedure is realized through two main phases. The first evaluates all 256 Elementary Cellular Automata possible rules to elect the ones with good visual and random patterns, to ensure an equitable distribution of the natural daylight in internal spaces. Based on the newly developed hourly-based metrics, simulations are conducted in the second phase to evaluate the Cellular Automata controlled dynamic shadings performance, and formalize the adaptive façade variation logic that maximizes daylighting and minimizes energy demand.
keywords Adaptive Façade; Dynamic Shading; Cellular Automata; Hourly-Based Metric; Performance Evaluation
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_033
id caadria2018_033
authors Bai, Nan and Huang, Weixin
year 2018
title Quantitative Analysis on Architects Using Culturomics - Pattern Study of Prizker Winners Based on Google N-gram Data
doi https://doi.org/10.52842/conf.caadria.2018.2.257
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 257-266
summary Quantitative studies using the corpus Google Ngram, namely Culturomics, have been analyzing the implicit patterns of culture changes. Being the top-standard prize in the field of Architecture since 1979, the Pritzker Prize has been increasingly diversified in the recent years. This study intends to reveal the implicit pattern of Pritzker Winners using the method of Culturomics, based on the corpus of Google Ngram to reveal the relationship of the sign of their fame and the fact of prize-winning. 48 architects including 32 awarded and 16 promising are analyzed in the printed corpus of English language between 1900 and 2008. Multiple regression models and multiple imputation methods are used during the data processing. Self-Organizing Map is used to define clusters among the awarded and promising architects. Six main clusters are detected, forming a 3×2 network of fame patterns. Most promising architects can be told from the clustering, according to their similarity to the more typical prize winners. The method of Culturomics could expand the sight of architecture study, giving more possibilities to reveal the implicit patterns of the existing empirical world.
keywords Culturomics; Google Ngram; Pritzker Prize; Fame Pattern; Self-Organizing Map
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_342
id caadria2018_342
authors Bhagat, Nikita, Rybkowski, Zofia, Kalantar, Negar, Dixit, Manish, Bryant, John and Mansoori, Maryam
year 2018
title Modulating Natural Ventilation to Enhance Resilience Through Modifying Nozzle Profiles - Exploring Rapid Prototyping Through 3D-Printing
doi https://doi.org/10.52842/conf.caadria.2018.2.185
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 185-194
summary The study aimed to develop and test an environmentally friendly, easily deployable, and affordable solution for socio-economically challenged populations of the world. 3D-printing (additive manufacturing) was used as a rapid prototyping tool to develop and test a façade system that would modulate air velocity through modifying nozzle profiles to utilize natural cross ventilation techniques in order to improve human comfort in buildings. Constrained by seasonal weather and interior partitions which block the ability to cross ventilate, buildings can be equipped to perform at reduced energy loads and improved internal human comfort by using a façade system composed of retractable nozzles developed through this empirical research. This paper outlines the various stages of development and results obtained from physically testing different profiles of nozzle-forms that would populate the façade system. In addition to optimizing nozzle profiles, the team investigated the potential of collapsible tube systems to permit precise placement of natural ventilation directed at occupants of the built space.
keywords Natural ventilation; Wind velocity; Rapid prototyping; 3D-printing; Nozzle profiles
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2018_125
id caadria2018_125
authors Bungbrakearti, Narissa, Cooper-Wooley, Ben, Odolphi, Jorke, Doherty, Ben, Fabbri, Alessandra, Gardner, Nicole and Haeusler, M. Hank
year 2018
title HOLOSYNC - A Comparative Study on Mixed Reality and Contemporary Communication Methods in a Building Design Context
doi https://doi.org/10.52842/conf.caadria.2018.1.401
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 401-410
summary The integration of technology into the design process has enabled us to communicate through various modes of virtuality, while more traditional face-to-face collaborations are becoming less frequent, specifically for large scale companies. Both modes of communication have benefits and disadvantages - virtual communication enables us to connect over large distances, however can often lead to miscommunication, while face-to-face communication builds stronger relationship, however may be problematic for geographically dispersed teams. Mixed Reality is argued to be a hybrid of face-to-face and virtual communication, and is yet to be integrated into the building design process. Despite its current limitations, such as field of view, Mixed Reality is an effective tool that generates high levels of nonverbal and verbal communication, and encourages a high and equal level of participation in comparison to virtual and face-to-face communication. Being a powerful communication tool for complex visualisations, it would be best implemented in the later stages of the building design process where teams can present designs to clients or where multiple designers can collaborate over final details.
keywords Mixed Reality; Communication; Hololens; Collaboration; Virtual
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_278
id caadria2018_278
authors Caetano, In?s, Ilunga, Guilherme, Belém, Catarina, Aguiar, Rita, Feist, Sofia, Bastos, Francisco and Leit?o, António
year 2018
title Case Studies on the Integration of Algorithmic Design Processes in Traditional Design Workflows
doi https://doi.org/10.52842/conf.caadria.2018.1.111
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 111-120
summary Algorithmic design processes have enormous potential for architecture. Even though some large design offices have already incorporated such processes in their workflow, so far, these have not been seriously considered by the large majority of traditional small-scale studios. Nevertheless, as the integration of algorithmic techniques inside architectural studios does not require mastering programming skills, but rather taking advantage of a collaborative design process, small design studios are therefore able of using such strategies within their workflow. This paper discusses a series of challenges presented by one of these studios, where we had to integrate algorithmic design processes with the studio's traditional workflow.
keywords Collaborative design; Algorithmic design; Design strategies; Design workflow processes
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_086
id caadria2018_086
authors Castelo Branco, Renata and Leit?o, António
year 2018
title Algorithmic Architectural Visualization
doi https://doi.org/10.52842/conf.caadria.2018.2.557
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 557-566
summary Digitally-generated visualizations, such as renders or movies, are, nowadays, commonly used as representation methods for architectural creations. This occurs not only in final stages of the process, with the goal of selling the product's image, but also in midst creation process to express concepts and ideas. Presently, the spread of parametric and algorithmic approaches to design creates a problem for visualization, as it enables the almost effortless change of 3D models, thus requiring repeated visualization efforts to keep up with the changes applied to the design. To solve this, we propose extending the algorithmic design approach to also include the high-level description of architectural image creation. The methodology, Algorithmic Architectural Visualization (AAV), also contemplates the required preparation settings for the visualization process, and includes possible visualization productions inspired by film techniques.
keywords Algorithmic Design; Architectural Visualization; Render; Film Grammar
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2018_156
id caadria2018_156
authors Chee, Ryan Wei Shen, Tan, Wei Lin, Goh, Wei Hern, Amtsberg, Felix and Dritsas, Stylianos
year 2018
title Locally Differentiated Concrete by Digitally Controlled Injection
doi https://doi.org/10.52842/conf.caadria.2018.1.195
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 195-204
summary This paper presents a digital fabrication process for concrete which may be deployed for surface texturing, volumetric modification of material properties and 2D and 3D forming. We process concrete in its slurry state by locally injecting chemicals in solution which cause vigorous effervescent reaction to take place. By precise and controlled dispensing, using computer software and robotic hardware developed, we produce local differentiation in the finally set concrete artefacts. Our work contributes to additive and subtractive 3D manufacturing as well as functionally graded materials fabrication.
keywords Digital Fabrication; Additive Manufacturing; Functionally Graded Materials; Architectural Robotics.
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2018_118
id caadria2018_118
authors Chen, Zi-Ru, Liao, Chien-Jung and Chu, Chih-Hsing
year 2018
title An Assembly Guidance System of Tou Kung Based on Augmented Reality
doi https://doi.org/10.52842/conf.caadria.2018.1.349
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 349-358
summary Tou kung represent Chinese architecture. Due to the difficulty of learning from ancient books, some develop 3D assembly models. Still, there are limits while using 2D images for assembly instructions. The purpose of this study is to explore whether the application of AR technology can guide the process of tou kung assembly and address the recognition gap between paper illustrations and the physical assembly process. The method is to observes the user's tou kung assembly behavior and performance. Then the study proposed an dynamic simulation AR guidance system to help people not only understand the structure, but also the culture behind to reach the goal of education promotion.
keywords Augmented Reality; Tou-Kung; assembly
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_056
id caadria2018_056
authors Chirkin, Artem, Pishniy, Maxim and Sender, Arina
year 2018
title Generilized Visibility-Based Design Evaluation Using GPU
doi https://doi.org/10.52842/conf.caadria.2018.2.483
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 483-492
summary Visibility plays an important role in perception and use of an urban design, and thus often becomes a target of design analysis. This work presents a fast method of evaluating various visibility-based design characteristics, such as isovists or insolation exploiting the GPU rendering pipeline and compute shaders. The proposed method employs a two-stage algorithm on each point of interest. First, it projects the visible space around a vantage point onto an equirectangular map. Second, it folds the map using a flexibly defined function into a single value that is associated with the vantage point. Being executed on a grid of points in a 3D scene, it can be visualized as a heat map or utilized by another algorithm for further design analysis. The developed system provides nearly real-time analysis tools for an early-stage design process to a broad audience via web services.
keywords design analysis; design evaluation; GPU; isovist; insolation
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2018_245
id caadria2018_245
authors Chowdhury, Shuva and Schnabel, Marc Aurel
year 2018
title An Algorithmic Methodology to Predict Urban Form - An Instrument for Urban Design
doi https://doi.org/10.52842/conf.caadria.2018.2.401
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 401-410
summary We question the recent practices of conventional and participatory urban design approaches and offer a middle approach by exploring computational design tools in the design system. On the one hand, the top-down urban planning approaches investigate urban form as a holistic matter which only can be calibrated by urban professionals. These approaches are not able to offer enough information to the end users to predict the urban form. On the other hand, the bottom-up urban design approaches cannot visualise predicted urban scenarios, and most often the design decisions stay as general assumptions. We developed and tested a parametric design platform combines both approaches where all the stakeholders can participate and visualise multiple urban scenarios in real-time feedback. Parametric design along with CIM modelling system has influenced urban designers for a new endeavour in urban design. This paper presents a methodology to generate and visualise urban form. We present a novel decision-making platform that combines city level and local neighbourhood data to aid participatory urban design decisions. The platform allows for stakeholder collaboration and engagement in complex urban design processes.
keywords knowledge-based system; algorithmic methodology ; design decision tool; urban form;
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2018_181
id caadria2018_181
authors Chun, Junho, Lee, Juhun and Park, Daekwon
year 2018
title TOPO-JOINT - Topology Optimization Framework for 3D-Printed Building Joints
doi https://doi.org/10.52842/conf.caadria.2018.1.205
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 205-214
summary Joints and connectors are often the most complex element in building assemblies and systems. To ensure the performance of the assemblies and systems, it is critical to optimize the geometry and configurations of the joints based on key functional requirements (e.g., stiffness and thermal exchange). The proposed research focuses on developing a multi-objective topology optimization framework that can be utilized to design highly customized joints and connections for building applications. The optimized joints that often resemble tree structures or bones are fabricated using additive manufacturing techniques. This framework is built upon the integration of high-fidelity topology optimization algorithms, additive manufacturing, computer simulations and parametric design. Case studies and numerical applications are presented to demonstrate the validity and effectiveness of the proposed optimization and additive manufacturing framework. Optimal joint designs from a variety of architectural and structural design considerations, such as stiffness, thermal exchange, and vibration are discussed to provide an insightful interpretation of these interrelationships and their impact on joint performance.
keywords Topology optimization; parametric design; 3d printing
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2018_085
id caadria2018_085
authors Chung, Chia-Chun and Jeng, Tay-Sheng
year 2018
title Information Extraction Methodology by Web Scraping for Smart Cities - Using Machine Learning to Train Air Quality Monitor for Smart Cities
doi https://doi.org/10.52842/conf.caadria.2018.2.515
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 515-524
summary This paper presents an opportunistic sensing system for air quality monitoring to forecast the implicit factors of air pollution. Opportunistic sensing is performed by web scraping in the social network service to extract information. The data source for the air quality analysis combines two types of information: explicit and implicit information. The objective is to develop the information extraction methodology by web scraping for smart cities. The application development methodology has potential for solving real-world problems such as air pollution by data comparison between social activity observing and data collecting in sensor network.
keywords smart city; open data; web scraping; social media; machine learning
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2018_008
id caadria2018_008
authors Crolla, Kristof, Cheng, Paul Hung Hon, Chan, Ding Yuen Shan, Chan, Arthur Ngo Foon and Lau, Darwin
year 2018
title Inflatable Architecture Production with Cable-Driven Robots
doi https://doi.org/10.52842/conf.caadria.2018.1.009
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 9-18
summary This paper argues for alternative methods for the in-situ integration of robotics in architectural construction. Rather than promoting off-site pre-fabrication through industrial robot applications, it advocates for suspended, light-weight, cable-driven robots that allow flexible and safe onsite implementation. This paper uses the topic of large-scale inflatable architectural realisation as a study case to test the application of such a robot, here with a laser-cutter as end-effecter. This preliminary study covers the design, development, prototyping, and practical testing of an inherently scale-less cable-driven laser-cutter setup. This setup allows for the non-size specific cutting of inflatable structures' components which can be designed with common physics simulation engines. The developed robotic proof of concept forms the basis for several further and future study possibilities that merge the field of architectural design and implementation with mechanical and automation engineering.
keywords Cable-driven robots; In-situ robotic fabrication; Large-scale fabrication; Inflatable architecture; Cross-disciplinarily
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2018_333
id caadria2018_333
authors Cupkova, Dana, Byrne, Daragh and Cascaval, Dan
year 2018
title Sentient Concrete - Developing Embedded Thermal and Thermochromic Interactions for Architecture and Built Environment
doi https://doi.org/10.52842/conf.caadria.2018.2.545
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 545-554
summary Historically, architectural design focused on adaptation of built environment to serve human needs. Recently embedded computation and digital fabrication have advanced means to actuate physical infrastructure in real-time. These 'reactive spaces' have typically explored movement and media as a means to achieve reactivity and physical deformation (Chatting et al. 2017). However, here we recontextualize 'reactive' as finding new mechanisms for permanent and non-deformable everyday materials and environments. In this paper, we describe our ongoing work to create a series of complex forms - modular concrete panels - using thermal, tactile and thermochromic responses controlled by embedded networked system. We create individualized pathways to thermally actuate these surfaces and explore expressive methods to respond to the conditions around these forms - the environment, the systems that support them, their interaction and relationships to human occupants. We outline the design processes to achieve thermally adaptive concrete panels, illustrate interactive scenarios that our system enables, and discuss opportunities for new forms of interactivity within the built environment.
keywords Responsive environments; Geometrically induced thermodynamics; Ambient devices; Internet of things; Modular electronic systems
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2018_259
id caadria2018_259
authors Doyle, Shelby, Forehand, Leslie, Hunt, Erin, Loughrey, Nick, Schneider, Sarah and Senske, Nick
year 2018
title Cyborg Sessions - A Case Study for Gender Equity in Technology
doi https://doi.org/10.52842/conf.caadria.2018.1.071
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 71-80
summary This paper discusses the ongoing lack of gender equity in architecture - specifically the shortfall of women in design technology - and presents a robotics workshop in the United States as a case study and method to challenge this inequality. The goals of this paper are to 1.) define a research agenda for documenting and understanding gender equity in design technology and 2.) to offer evidence-based strategies from STEM education and this architecture case study for improving the representation of women in this field.
keywords Gender; Equality; Women; Feminism; Robotics
series CAADRIA
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5HOMELOGIN (you are user _anon_586752 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002