CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 2 of 2

_id ecaade2018_111
id ecaade2018_111
authors Khean, Nariddh, Fabbri, Alessandra and Haeusler, M. Hank
year 2018
title Learning Machine Learning as an Architect, How to? - Presenting and evaluating a Grasshopper based platform to teach architecture students machine learning
doi https://doi.org/10.52842/conf.ecaade.2018.1.095
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 95-102
summary Machine learning algorithms have become widely embedded in many aspects of modern society. They have come to enhance systems, such as individualised marketing, social media services, and search engines. However, contrasting its growing ubiquity, the architectural industry has been comparatively resistant in its adoption; objectively one of the slowest industries to integrate with machine learning. Machine learning expertise can be separate from professionals in other fields; however, this separation can be a major hinderance in architecture, where interaction between the designer and the design facilitates the production of favourable outcomes. To bridge this knowledge gap, this research suggests that the solution lies with architectural education. Through the development of a novel educative framework, the research aims to teach architecture students how to implement machine learning. Exploration of student-centred pedagogical strategies was used to inform the conceptualisation of the educative module, which was subsequently implemented into an undergraduate computational design studio, and finally evaluated on its ability to effectively teach designers machine learning. The developed educative module represents a step towards greater technological adoption in the architecture industry.
keywords Artificial Intelligence; Machine Learning; Neural Networks; Student-Centred Learning; Educative Framework
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2018_126
id caadria2018_126
authors Khean, Nariddh, Kim, Lucas, Martinez, Jorge, Doherty, Ben, Fabbri, Alessandra, Gardner, Nicole and Haeusler, M. Hank
year 2018
title The Introspection of Deep Neural Networks - Towards Illuminating the Black Box - Training Architects Machine Learning via Grasshopper Definitions
doi https://doi.org/10.52842/conf.caadria.2018.2.237
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 237-246
summary Machine learning is yet to make a significant impact in the field of architecture and design. However, with the combination of artificial neural networks, a biologically inspired machine learning paradigm, and deep learning, a hierarchical subsystem of machine learning, the predictive capabilities of machine learning processes could prove a valuable tool for designers. Yet, the inherent knowledge gap between the fields of architecture and computer science has meant the complexity of machine learning, and thus its potential value and applications in the design of the built environment remain little understood. To bridge this knowledge gap, this paper describes the development of a learning tool directed at architects and designers to better understand the inner workings of machine learning. Within the parametric modelling environment of Grasshopper, this research develops a framework to express the mathematic and programmatic operations of neural networks in a visual scripting language. This offers a way to segment and parametrise each neural network operation into a basic expression. Unpacking the complexities of machine learning in an intermediary software environment such as Grasshopper intends to foster the broader adoption of artificial intelligence in architecture.
keywords machine learning; neural network; action research; supervised learning; education
series CAADRIA
email
last changed 2022/06/07 07:52

No more hits.

HOMELOGIN (you are user _anon_506535 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002