CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 8 of 8

_id caadria2018_182
id caadria2018_182
authors Hyun, Kyung Hoon
year 2018
title Computational Sketch Synthesis: Enhancing Design Creativity Through Interactive Sketch Morphing in Digital Environment
doi https://doi.org/10.52842/conf.caadria.2018.2.463
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 463-470
summary This paper identifies how Computational Sketch Synthesis (CSS) methodology can help designers improve their design outcomes. The interactive CSS introduced in this research aids designers in exploring unvisited design options through the instant visualization of gradual alternatives of design sketches. This CSS allows designers to conduct both the hand-drawn sketch (drawing production) and computational synthesis (transformation) simultaneously. CSS interactively synthesizes hand-drawn sketches from the designer and creates novel design alternatives through morphing the sketches. Also, CSS invites designers to flexibly reflect new design directions requested in the middle of the design process. The research also has both academic and professional contributions. In the interests of academia, this paper identifies a possible area in sketching where computational design synthesis can automate a traditional sketching process. In the professional realm, design professionals can progress their design processes more efficiently while exploring every iteration of different design variations.
keywords Computational Design; Design Creativity; Design Synthesis; Sketching; Digital Environment
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2018_314
id caadria2018_314
authors Kim, Jin Sung, Song, Jae Yeol and Lee, Jin Kook
year 2018
title Approach to the Extraction of Design Features of Interior Design Elements Using Image Recognition Technique
doi https://doi.org/10.52842/conf.caadria.2018.2.287
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 287-296
summary This paper aims to propose deep learning-based approach to the auto-recognition of their design features of interior design elements using given digital images. The recently image recognition technique using convolutional neural networks has shown great success in the various field of research and industry. The open-source frameworks and pre-trained image recognition models supporting image recognition task enable us to easily retrain the models to apply them on any domain. This paper describes how to apply such techniques on interior design process and depicts some demonstration results in that approaches. Furniture that is one of the most common interior design elements has sub-feature including implicit design features, such as style, shape, function as well as explicit properties, such as component, materials, and size. This paper shows to retrain the model to extract some of the features for efficiently managing and utilizing such design information. The target element is chair and the target design features are limited to functional features, materials, seating capacity and design style. Total 3933 chair images dataset and 6 retrained image recognition models were utilized for retraining. Through the combination of those multiple models, inference demonstration also has been described.
keywords Deep learning; Image recognition; Interior design elements; Design feature; Chair
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2018_293
id caadria2018_293
authors Lee, Jisun and Lee, Hyunsoo
year 2018
title The Visible and Invisible Network of a Self-Organizing Town - Agent-Based Simulation for Investigating Urban Development Process
doi https://doi.org/10.52842/conf.caadria.2018.2.411
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 411-420
summary This study applies self-organization as a methodology to understand the complex process of city networks caused by interactions between spatial structures and individual behaviors. The agent-based simulations have been conducted to investigate the visible and invisible networks understanding the self-organized aspects of city development processes. To develop optimal future networks providing connectivity and accessibility this study investigates spatial network configurations from internal individual behavior and movement. As results, it was found that the spatial configurations of the agent movement trails match to the current district boundaries and the similar network patterns were seen in various control values of agent behavior settings. This study contributes to searching out the hierarchy of network structures which is an important factor for re-planning of the way system.
keywords Agent-based simulation; network analysis ; self organization ; urban development process ; Physarum polycephalum
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2018_281
id caadria2018_281
authors Lee, Jisun and Lee, Hyunsoo
year 2018
title Pneumatic Skin with Adaptive Openings - Adaptive Façade with Opening Control Integrated with CFD for Natural Ventilation
doi https://doi.org/10.52842/conf.caadria.2018.2.143
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 143-151
summary The unique integration of geometries and techniques allows the natural organisms to adapt to different environments in creative ways. In this study, a bio-inspired pneumatic facade is presented as a strategy to improve the efficiency of natural ventilation performance by controlling the adaptive openings. The Computational Fluid Dynamics simulation has been conducted to visualize airflows in order to explore how the changing configurations of openings enhance natural ventilation efficiency. The airflows are investigated with changes in wind speed and direction to find out the opening configurations which provide indoor airflows at the comfort level of velocities. As results, it was shown that indoor air velocities were modulated by controlling opening sizes, geometries and positions of the openings, and it was a beneficial strategy to apply the optimized opening configurations implementing automatic control. Also, the air distribution can be enhanced by changing opening configurations in changing conditions of wind speed and direction. An effective methodology for an intelligent façade opening control to encourage natural ventilation is presented in this study to deliver users comfort and efficiency.
keywords Natural ventilation; airflow simulation; pneumatic facade; Computational Fluid Dynamics
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2018_062
id caadria2018_062
authors Narengerel, Amartuvshin, Hong, Sukjoo, Lee, Chae-Seok and Lee, Ji-Hyun
year 2018
title FBSMAP: The Spatial Representation Method for Intelligent Semantic Service in Indoor Environment
doi https://doi.org/10.52842/conf.caadria.2018.2.587
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 587-596
summary In order to provide intelligent services in complex and diverse indoor environments, it is necessary to understand spatial features of indoor objects: furniture and items. Function-Behavior-Structure Map (FBSMAP), which is a novel indoor representation method that focuses on space functionality for intelligent semantic services, is introduced in this study. The three steps of FBSMAP are defining spatial components, constructing semantic map for indoor environment, and securing spatial features. This novel implementation method is implemented and examined on 3D house models.
keywords Indoor Representation Method; Semantic Space; Spatial Subdivision; IndoorGML; Furniture Semantics
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2018_303
id caadria2018_303
authors Song, Jae Yeol, Kim, Jin Sung, Kim, Hayan, Choi, Jungsik and Lee, Jin Kook
year 2018
title Approach to Capturing Design Requirements from the Existing Architectural Documents Using Natural Language Processing Technique
doi https://doi.org/10.52842/conf.caadria.2018.2.247
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 247-254
summary This paper describes an approach to utilizing natural language processing (NLP) to capture design requirements from the natural language-based architectural documents. In various design stage of the architectural process, there are several different kinds of documents describing requirements for buildings. Capturing the design requirements from those documents is based on extracting information of objects, their properties, and relations. Until recently, interpreting and extracting that information from documents are almost done by a manual process. To intelligently automate the conventional process, the computer has to understand the semantics of natural languages. In this regards, this paper suggests an approach to utilizing NLP for semantic analysis which enables the computer to understand the semantics of the given text data. The proposed approach has following steps: 1) extract noun words which mostly represent objects and property data in Korean Building Act; 2) analyze the semantic relations between words, using NLP and deep learning; 3) Based on domain database, translate the noun words in objects and properties data and find out their relations.
keywords NLP (Natural Language Processing); Deep learning; Design requirements; Korean Building Act; Semantic analysis
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2018_237
id caadria2018_237
authors Yi, Taeha, Lee, Injung, Lee, Chae-Seok, Lee, Gi Bbeum, Kim, Meereh and Lee, Ji-Hyun
year 2018
title Interactive Data Acquisition for CBR System Based Smart Home Assistant - Utilizing Function-Behavior-Structure Framework
doi https://doi.org/10.52842/conf.caadria.2018.2.525
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 525-534
summary This research aims to develop a Case-Based Reasoning (CBR) system that recommends services to users in IoT environment. To develop this system, we establish a framework that designs raw data into analyzable information using Function-Behavior-Structure properties. Also, we develop an interactive flow of data acquisition that builds up cases gradually by gathering data through conversational interactions between the system and its user. This research develop a prototype of this system based on simulated cases. Finally, the prototype of this system was evaluated by experts in the field of system design to verify how the service (solution) recommended by system is similar with them. The results of this evaluation showed an agreement of average 54%, but found that there was a big difference from the experts in the specific context. This result implies that it is necessary to improve the context awareness in the reasoning process of this system.
keywords Case Based Reasoning; Function-Behavior-Structure framework; Service recommendation; IoT environment; Conversation
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2018_367
id ecaade2018_367
authors Ju, Hannah and Lee, Hyunsoo
year 2018
title Computational Color Design Process Towards Aesthetic Community Revitalization
doi https://doi.org/10.52842/conf.ecaade.2018.1.677
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 677-686
summary This study describes the digital color design process using emotional words. The design process proposed in this paper consists of three steps: color scheme selection, color arrangement, and design evaluation. The application of the color design process is to design the landscape of the village. It is much more complicated to assign colors to already existing buildings in a village than to a single building. The originality of this study is that the design process suggests a solution to solve this complex color design problem using numerical evaluation of the generated design. A case study was developed to show the potential of the proposed digital color design process. Through the case study, the utility and potential of the digital design process were demonstrated.
keywords Design process; Color scheme; Color composition; Color arrangement; Landscape; Color design
series eCAADe
email
last changed 2022/06/07 07:52

No more hits.

HOMELOGIN (you are user _anon_858511 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002