CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 3 of 3

_id ecaade2018_298
id ecaade2018_298
authors Rossi, Gabriella and Nicholas, Paul
year 2018
title Modelling A Complex Fabrication System - New design tools for doubly curved metal surfaces fabricated using the English Wheel
doi https://doi.org/10.52842/conf.ecaade.2018.1.811
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 811-820
summary Standard industrialization and numeration models fail to translate the richness and complexity of traditional crafts into the making of the architectural elements, which excludes them from the industry. This paper introduces a new way of modelling a complex craft fabrication method, namely the English Wheel, that is based on the creation of a cyber-physical system. The cyber-physical system connects a robotic arm and an artificial neural network. The robot arm controls the movement of a metal sheet through the English wheel to achieve desired geometries according to toolpaths and predicted deformations specified by the neural network. The method is demonstrated through the making of 1:1 design probes of doubly curved metal surfaces.
keywords Digital craft; metal forming; doubly curved surfaces; robotic fabrication; neural networks; cyber-physical system
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia18_146
id acadia18_146
authors Rossi, Gabriella; Nicholas, Paul
year 2018
title Re/Learning the Wheel. Methods to Utilize Neural Networks as Design Tools for Doubly Curved Metal Surfaces
doi https://doi.org/10.52842/conf.acadia.2018.146
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 146-155
summary This paper introduces concepts and computational methodologies for utilizing neural networks as design tools for architecture and demonstrates their application in the making of doubly curved metal surfaces using a contemporary version of the English Wheel. The research adopts an interdisciplinary approach to develop a novel method to model complex geometric features using computational models that originate from the field of computer vision.

The paper contextualizes the approach with respect to the current state of the art of the usage of artificial neural networks both in architecture and beyond. It illustrates the cyber physical system that is at the core of this research, with a focus on the employed neural network–based computational method. Finally, the paper discusses the repercussions of these design tools on the contemporary design paradigm.

keywords full paper, ai & machine learning, digital craft, robotic production, computation
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id ecaade2018_388
id ecaade2018_388
authors Stefas, Alexander, Rossi, Andrea and Tessmann, Oliver
year 2018
title Funken - Serial Protocol Toolkit for Interactive Prototyping
doi https://doi.org/10.52842/conf.ecaade.2018.2.177
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 177-186
summary In order to offer a novel approach towards the development of interactive projects in architecture and design, as well as their tight integration in existing CAAD toolchains, this paper presents Funken, an open-source toolkit that handles serial communication for microcontrollers, aimed at simplifying the integration process between CAAD tools and interactive devices, and allowing fast implementation of human-readable user-specific communication protocols on the fly. Funken's details and implementation are presented, as well as custom-developed interfaces to Grasshopper, NodeJS and Processing. Funken is designed for building systems that allow users to implement their own custom defined logic, without imposing pre-determined behaviors. Within teaching, it allows to encapsulate complexity of microcontroller programming, while still allowing to implement complex behaviors through simple interfaces. The possibility of integrating Funken into a variety of CAD and media design frameworks offers the possibility of adding interactive functionality to a variety of projects.
keywords Serial Communication; Interactive Prototyping; Arduino; Physical Computing
series eCAADe
email
last changed 2022/06/07 07:56

No more hits.

HOMELOGIN (you are user _anon_539689 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002