CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 1 of 1

_id acadia18_342
id acadia18_342
authors Wu, Kaicong; Kilian, Axel
year 2018
title Robotic Equilibrium: Scaffold Free Arch Assemblies
doi https://doi.org/10.52842/conf.acadia.2018.342
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 342-349
summary Compression only arch structures are structurally highly efficient in force equilibrium. However, the material efficiency is offset by the traditional use of scaffolds to position materials and counter the out of equilibrium forces during assembly. We introduce a method of sequentially assembling compression only structures without a scaffold by robotically maintaining the compression equilibrium in every step. A two-arm collaborative robotic setup was used to maintain force equilibrium throughout arch assembly with the arms taking turns first hot wire cutting and placing blocks and providing a temporary scaffold to support the arch end point.

To test the approach, a single catenary arch was generated using form-finding techniques and sequentially built from foam blocks. Moving forward we show the relationship between the joint valence (largest number of joined branches) of a multi-branched structure and the minimum number of robotic arms required for assembly using our initial technique. With only two robotic arms available, the technique was further developed to reduce the required number of arms per arch branch from two to one by attaching caterpillar tracks at the block supporting end effector. This allows a human to load the next block and the arm to move forward along the arch while maintaining equilibrium. Results show that robotic equilibrium scaffold free arch assembly is possible and can reduce scaffold waste and maintain the material efficiency of compression only structures. Future work will explore further applications of assistive robotics in construction replacing static construction aids with dynamic sensory feedback of equilibrium forces.

keywords work in progress, collaborative sequential assembly, robotic equilibrium, compression only structures, form finding
series ACADIA
type paper
email
last changed 2022/06/07 07:57

No more hits.

HOMELOGIN (you are user _anon_708906 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002