CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 9 of 9

_id acadia18_196
id acadia18_196
authors Zhang, Yan; Grignard; Aubuchon, Alexander; Lyons, Keven; Larson, Kent
year 2018
title Machine Learning for Real-time Urban Metrics and Design Recommendations
doi https://doi.org/10.52842/conf.acadia.2018.196
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 196-205
summary Cities are growing, becoming more complex, and changing rapidly. Currently, community engagement for urban decision-making is often ineffective, uninformed, and only occurs in projects’ later stages. To facilitate a more collaborative and evidence-based urban decision- making process for both experts and non-experts, real-time feedback and optimized suggestions are essential. However, most of the current tools for urban planning are neither capable of performing complex simulations in real time nor of providing guidance for better urban performance.

CityMatrix was introduced to address these challenges. Machine learning techniques were applied to achieve real-time prediction of multiple urban simulations, and thousands of city configurations were simulated. The simulation results were used to train a convolutional neural network (CNN) to predict the traffic and solar performance of unseen city configurations. The prediction with the CNN is thousands of times faster than the original simulations and maintains a high-quality representation of the results. This machine learning approach was applied as a versatile, quick, accurate, and computationally efficient method not only for real-time feedback, but also for optimized design recommendations. Users involved in the evaluation of this project had a better understanding of the embodied trade-offs of the city and achieved their goals in an efficient manner.

keywords full paper, optimization, collaboration, urban design & analysis, ai & machine learning
series ACADIA
type paper
email
last changed 2022/06/07 07:57

_id caadria2018_316
id caadria2018_316
authors Yan, Chao, Zhang, Yunyu, Yuan, Philip F. and Yao, Jiawei
year 2018
title Virtual Motion - Shifting Perspective as an Instrument for Geometrical Construction
doi https://doi.org/10.52842/conf.caadria.2018.2.471
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 471-480
summary From the invention of projection to the emergence of digital technology, there's a clear correspondences among the transformations of visual representation paradigm in art, the developments of design instrument in architecture, and the human perception of time/space. Base on the examination of this particular historical trajectory, this paper focuses the working mechanism of shifting perspective as an alternative design instrument to explore the possibility of embedding time and motion into static form in digital age. Firstly, the paper reviews how the shifting perspective was introduced to represent space in modern western painting and photography. Then based on the research on shifting perspective, the paper develops a design tool, which would be able to translate motion into the particular geometrical feature of a generated 3D object. In the end, the paper brings further discussions about the formal and spatial effects brought by this new tool, and its potential to incorporate the perceptive image of human being into design process.
keywords Shape Study; Projective Geometry; Shifting Perspective; Motion; Time Dimension
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2019_665
id caadria2019_665
authors Jin, Jinxi, Han, Li, Chai, Hua, Zhang, Xiao and Yuan, Philip F.
year 2019
title Digital Design and Construction of Lightweight Steel-Timber Composite Gridshell for Large-Span Roof - A Practice of Steel-timber Composite Gridshell in Venue B for 2018 West Bund World AI Conference
doi https://doi.org/10.52842/conf.caadria.2019.1.183
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 183-192
summary Timber gridshell is an efficient structural system. However, the feature of double curved surface result in limitation of practical application of timber gridshell. Digital technology provides an opportunity to break this limitation and achieve a lightweight free-form gridshell. In the practice of Venue B for 2018 West Bund World AI Conference, architects and structural engineers cooperated to explore innovative design of lightweight steel-timber composite gridshell with the help of digital tools. Setting digital technology as support and restrains of the project as motivation, the design tried to achieve the realization of material, structure, construction and spatial expression. The digital design and construction process will be discussed from four aspects, including form-finding of gridshell surface, steel-timber composite design, digital detailed design and model-based fabrication and construction. We focuses on the use of digital tools in this process, as well as the role of the design subject.
keywords Timber Gridshell; Steel-timber Composite; Digital Design and Construction; Lightweight Structure; Large-span Roof
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2018_103
id caadria2018_103
authors Liu, Chang, Zhang, Xu and Nagakura, Takehiko
year 2018
title PanoFrame: A Lightweight Panoramic Video Editing Tool for Storytelling with Spatial Content
doi https://doi.org/10.52842/conf.caadria.2018.2.567
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 567-576
summary As low-cost panoramic cameras become prevalent among non-professional consumers, an easy-to-use panoramic video editing tool is required for emerging storytellers. This paper proposes a lightweight online panoramic video editing tool for storytelling and explores a method of interpreting the same spatial content from different perspectives with panoramic videos. We conducted three experiments using different groups of participants to test how people create, understand, and interact with a panoramic video story in the proposed tool. The results reveal that this tool enables storytellers to work collaboratively and create multiple narratives from a panoramic video, and the generated panoramic video narratives are also more attractive to audiences than the raw video. This tool has the potential to be an ever-growing crowdsourcing community with a database of multiple narratives and creates opportunities for designers to record, learn about and present architectural and urban space from multiple perspectives.
keywords Storytelling; panoramic video; spatial content; multiple perspective narrative; crowdsourcing
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2018_216
id caadria2018_216
authors Yuan, Philip F., Chen, Zhewen and Zhang, Liming
year 2018
title Form Finding for 3D Printed Pedestrian Bridges
doi https://doi.org/10.52842/conf.caadria.2018.1.225
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 225-234
summary Due to the highly interrelation between architecture and engineering involved in the early design stage of 3D printing, form-finding is the critical step in the large-scale 3D printing projects. This paper focused on the research of form-finding applied in large-scale 3D printed structures, specifically, in the design of two pedestrian bridges. A three-step form finding approach was introduced in this paper. Multiple numerical methods were involved in the approach to find an optimal solution for both aesthetics and structural design for two 3D printed pedestrian bridges. The application of the three steps of form-finding, which take consideration of material properties, site limitations, applied loads etc., to the design of the large-scale 3D printed bridges were discussed in details in this paper. The approach of form-finding in an early designing stage disused in this paper helps to understand the combination of architecture and structure engineering.
keywords Form Finding; 3D Printing; Structural Performance; Material Performance; Topology Optimization
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2018_266
id ecaade2018_266
authors Zhang, Catty Dan and Sayegh, Allen
year 2018
title Multi-dimensional Medium-printing - Prototyping Robotic Thermal Devices for Sculpting Airflow
doi https://doi.org/10.52842/conf.ecaade.2018.1.841
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 841-850
summary This research investigates the design and prototyping of fabrication machines that utilize multi-dimensional printing techniques to sculpt an invisible medium- airflow, inspired by its unique materiality, philosophical value, sensorial aspects, and increasing considerations of atmosphere and climate in architectural research and design. A series of robotic thermal devices were developed to modulate animated geometry sequences through scripted movements, designated coordinates, and temperature fluctuations. This paper elaborates in depth multi-stage developments and experiments that integrate various systems, fabrication processes, optical experiments and computational analysis. It situates the experimental process of the medium-driven fabrication with possible applications in architectural design as envisioning alternative environmental systems utilizing thermal byproducts under aesthetic and experiential considerations.
keywords Airflow; Robotics; Additive Manufacturing; Fabrication; Atmosphere
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2018_217
id caadria2018_217
authors Zhang, Le-Min, Jeng, Tay-Sheng and Zhang, Ruo-Xi
year 2018
title Integration of Virtual Reality, 3-D Eye-Tracking, and Protocol Analysis for Re-Designing Street Space
doi https://doi.org/10.52842/conf.caadria.2018.1.431
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 431-440
summary The objective of this paper is to develop an eye-tracking technology combined with a virtual reality system for an experimental study of an historical street design. Using protocol analysis, a set of design objects, parameters, and subjects are randomly selected for evaluation of the virtual street space of an ancient city. 3-D point-cloud data of spatial behaviors are tracked and analyzed. It is concluded that people with different cultural backgrounds each have a considerably different perception of the street space's characteristics. The methodology described in this paper can be used for spatial design of urban space in the future.
keywords Virtual Reality; Eye-Tracking; Protocol Analysis; Street Space
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2018_039
id caadria2018_039
authors Zhang, Pengyu and Xu, Weiguo
year 2018
title Quasicrystal Structure Inspired Spatial Tessellation in Generative Design
doi https://doi.org/10.52842/conf.caadria.2018.1.143
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 143-152
summary Quasicrystal structure is a kind of quasiperiodic spatial tessellation formed by several kinds of tiles. Compared with periodic or other aperiodic tiling, it shows superiorities but also drawbacks when used for generative design. It can generate attractive and irregular novel forms with controllable cost for construction, but its strict rules restrict its variety. To cover the disadvantages of these tessellations without diminishing their advantages, a new kind of spatial tessellation, named as Periodic-to-Aperiodic (P-A) Tiling is proposed in this paper with a series of installation design cases, inspired by the primary principles and architectural applications of quasicrystal structure.
keywords Spatial tessellation; Quasicrystal structure; Generative Design
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2019_664
id caadria2019_664
authors Zhou, Yifan, Zhang, Liming, Wang, Xiang, Chen, Zhewen and Yuan, Philip F.
year 2019
title Exploration of Computational Design and Robotic Fabrication with Wire-Arc Additive Manufacturing Techniques
doi https://doi.org/10.52842/conf.caadria.2019.1.143
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 143-152
summary This paper discussed the exploration of computational design and robotic fabrication with Wire-Arc Additive Manufacturing techniques in a robotic metal printing workshop in Digital Futures 2018. Based on the previous research on structural-performance based design and robotic fabrication, this year's workshop mainly focused on the Wire-Arc Additive Manufacturing techniques and its possible outcomes. A prototype chair was tested for preparation. And the final target of the workshop was to build a bridge about 11m across the river. Through this metal printed bridge project, several computational optimization methods were applied to fulfill the final design. And Wire-Arc Additive Manufacturing techniques with robotic fabrication were carried out during the fabrication process.
keywords computational design; robotic fabrication; wire-arc additive manufacturing techniques
series CAADRIA
email
last changed 2022/06/07 07:57

No more hits.

HOMELOGIN (you are user _anon_102951 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002