CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 5 of 5

_id caadria2018_309
id caadria2018_309
authors Oprean, Danielle, Verniz, Debora, Zhao, Jiayan, Wallgrün, Jan Oliver, Duarte, José P. and Klippel, Alexander
year 2018
title Remote Studio Site Experiences: Investigating the Potential to Develop the Immersive Site Visit
doi https://doi.org/10.52842/conf.caadria.2018.1.421
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 421-430
summary Immersive technologies are now enabling better and more affordable immersive experiences, offering the opportunity to revisit their use in the architectural and landscape studio to gain site information. Considering when travel to a site is limited or not possible, immersive experiences can help with conveying site information by overcoming issues faced in earlier virtual studios. We focused on developing three applications to understand the workflow for incorporating site information to generate an immersive site experience. The applications were implemented in a semester-long joint architecture and landscape architecture studio focused on remotely designing for the Santa Marta informal settlement in Rio, Brazil. Preliminary results of implementing the applications indicate a positive outlook towards using immersive experiences for site information particularly when a site is remote.
keywords immersive experience; site visit; virtual reality
series CAADRIA
email
last changed 2022/06/07 08:00

_id caadria2018_209
id caadria2018_209
authors Yao, Jiawei, Lin, Yuqiong, Zhao, Yao, Yan, Chao, Li, Changlin and Yuan, Philip F.
year 2018
title Augmented Reality Technology based Wind Environment Visualization
doi https://doi.org/10.52842/conf.caadria.2018.1.369
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 369-377
summary Considering the outdoor environment at the initial stage of design process plays a significant role on future building performance. Augmented Reality (AR) technology applied in this research can integrate real world building morphology information and virtual world ventilation information seamlessly that rapidly and directly provides designers information for observation and evaluation. During the case study of "2017 Shanghai DigitalFUTURE" summer workshop, a research on augmented reality technology based wind environment visualization was carried on. The achievement with an application software not only showed the geometric information of the real world objects (such as buildings), but also the virtual wind environment has displayed. Thus, these two kinds of information can complement and superimpose each other. This AR technology based software brings multiple synthetic together, which can (1) visualize the air flow around buildings that provides designers rapid and direct information for evaluation; (2) deal with wind-environment-related data quantitatively and present in an intuitive, easy-to-interpret graphical way; and (3) be further developed as a visualization system based on built-in environments in the future, which contributes to rapid evaluation of a series of programs at the beginning of the building design.
keywords Environment visualization; Augmented reality technology; Fast response; Outdoor ventilation
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2018_211
id caadria2018_211
authors Zhao, Yao, Guo, Zhe, Yin, Hao, Yao, Jiawei and Yuan, Philip F.
year 2018
title Behavioral Data Analysis and Visualization System Base on UWB Interior Positioning Technology
doi https://doi.org/10.52842/conf.caadria.2018.2.217
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 217-226
summary The behavioral patterns of human in buildings influence the rational setting of space and function dramatically. However, due to the lack of data acquisition methods and data accuracy, big data analysis and visualization research in the microscopic aspects of indoor space is hampered. With the maturity of indoor positioning technology, UWB (Ultra Wideband) positioning technology based on narrow pulse has the characteristics of high transmission rate, low transmit power and strong penetrating ability, which provides more accurate results for the behavior data acquisition in indoor space. In this research, the big data thinking has been introduced into the behavioral performance analysis process. Therefore, data acquisition, data storage and management, behavioral data visualization and machine learning algorithms are integrated into a set of behavioral data analysis and visualization system, to quantitative research the behavioral characteristics of visitors in the exhibition hall by the on-site experiment .
keywords UWB interior positioning technology; Behavior Data Visualization; on-site experiment
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia18_186
id acadia18_186
authors Yin, Hao; Guo, Zhe; Zhao, Yao; Yuan, Philip F.
year 2018
title Behavior Visualization System Based on UWB Positioning Technology
doi https://doi.org/10.52842/conf.acadia.2018.186
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 186-195
summary This paper takes behavioral performance as a starting point and uses ultra-wideband (UWB) positioning technology and visualization methods to accurately collect and present in-place behavioral data so as to explore the behavioral characteristics of space users. In this process, we learned the observation, quantification, and presentation of behavioral data from the evolution of behavioral research. Secondly, after a comparative analysis of four types of indoor positioning technologies, we selected UWB-positioning technology and the JavaScript programming language as the development tools for a behavior visualization system. Next, we independently developed the behavior visualization system, which required a deep understanding of the working principle of UWB technology and the visualization method of the JavaScript programming language. Finally, the system was applied to an actual space, collecting and presenting users’ behavioral characteristics and habits in order to verify the applicability of the system in the field of behavioral research.
keywords full paper, design tools, ai + machine learning, big data, behavioral performance + simulation
series ACADIA
type paper
email
last changed 2022/06/07 07:57

_id caadria2019_329
id caadria2019_329
authors Zhao, Yao, Zhu, Weiran and Yuan, Philip F.
year 2019
title From Acoustic Data Perception to Visualization Design
doi https://doi.org/10.52842/conf.caadria.2019.1.393
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 393-402
summary This research project is based on the research results from the "Acoustic Visualization Group" of Digital FUTURES Summer Workshop in Shanghai, 2018. In this workshop, students use sound data acquisition sound collection equipment to collect sound information in the space and transform it into digital data. After analyzing the data, they present it as a visible form and design the sound interaction device based on the results. This study combines the media art and digital technology to transform the invisible acoustics digital information into a tangibly visible experiencing space and to mix the virtual acoustics space, realistic light- and- shadow space and the three-dimension material space in multi-dimensions through the digital programming and generative art design. Acoustic visualization interaction design is a comprehensive attempt which mixed with several research fields such as architecture device design, digital media technology, human-computer interaction and architecture environment science.
keywords Acoustic Visualization; Digital FUTURES; Interaction Device
series CAADRIA
email
last changed 2022/06/07 07:57

No more hits.

HOMELOGIN (you are user _anon_293107 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002