CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 623

_id ecaade2018_439
id ecaade2018_439
authors Jose, Duarte, Nazarian, Shadi and Ashrafi, Negar
year 2018
title Designing Shelters for 3D-printing - A studio experiment
doi https://doi.org/10.52842/conf.ecaade.2018.2.031
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 31-38
summary This paper describes an architectural design studio experiment, developed with the aim of exploring the interrelationship between the architectural design of basic shelters and additive manufacturing technology (aka 3D printing) using concrete. This fabrication technology has been developed over the past twenty years in various locations Worldwide and there has been some experiments on its use for making buildings. However, these experiments are still very limited in number and results, in the sense that do not fully explore the potential of the technology and its impact on the way we design and make buildings. The studio evolved in the context of a larger project in which a multidisciplinary team of researchers is developing the technology for the additive manufacturing in concrete. Research evolves along three main thrusts of work on materials, systems, and design. The studio introduced students to these various aspects, examined their interrelationships, impacts, and applications in architectural design and construction of buildings. The hope was to collect more information and feedback to inform the overarching research. Results showed the feasibility of the technology and identified issues that need to be addressed in future research.
keywords additive manufacturing; 3D printing; concrete; design education
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2018_167
id ecaade2018_167
authors Anton, Ana and Abdelmahgoub, Ahmed
year 2018
title Ceramic Components - Computational Design for Bespoke Robotic 3D Printing on Curved Support
doi https://doi.org/10.52842/conf.ecaade.2018.2.071
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 71-78
summary Additive manufacturing enables the fabrication of affordable customisation of construction elements. This paper presents a computational design method developed for 3D printing of unique interlocking ceramic components, which assemble into segmented columns. The fabrication method is ceramic-paste extrusion, robotically placed on semi-cylindrical molds. Material system and fabrication setup contribute to the development of an integrated generative system which includes overall design, assembly logic and printing tool-path. By contextualizing clay extrusion and identifying challenges in bespoke tool-path generation, this paper discusses detailing opportunities in digital fabrication. Finally, it identifies future directions of research in extrusion-based printing.
keywords CAAD education; generative design; robotic 3D printing; clay extrusion; curved support
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_165
id ecaade2018_165
authors Fisher-Gewirtzman, Dafna and Bruchim, Elad
year 2018
title Considering Variant Movement Velocities on the 3D Dynamic Visibility Analysis (DVA) - Simulating the perception of urban users: pedestrians, cyclists and car drivers.
doi https://doi.org/10.52842/conf.ecaade.2018.2.569
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 569-576
summary The objective of this research project is to simulate and evaluate the effect of movement velocity and cognitive abilities on the visual perception of three groups of urban users: pedestrians, cyclists and car drivers.The simulation and analysis is based on the 3D Dynamic Visual Analysis (DVA) (Fisher-Gewirtzman, 2017). This visibility analysis model was developed in the Rhinoceros and Grasshopper software environments and is based on the conceptual model presented in Fisher-Gewirtzman (2016): a 3D Line of Sight (LOS) visibility analysis, taking into account the integrated effect of the 3D geometry of the environment and the variant elements of the view (such as the sky, trees and vegetation, buildings and building types, roads, water etc.). In this paper, the current advancement of the existing model considers the visual perception of human users employing three types of movement in the urban environment--pedestrians, cyclists and drivers--is explored.We expect this research project to exemplify the contribution of such a quantification and evaluation model to evaluating existing urban structures, and for supporting future human perception-based urban design processes.
keywords visibility analysis and simulation; predicting perception of space; movement in the urban environment; pedestrians; cyclists; car drivers
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2018_233
id ecaade2018_233
authors Kontiza, Iacovina, Spathi, Theodora and Bedarf, Patrick
year 2018
title Spatial Graded Patterns - A case study for large-scale differentiated space frame structures utilising high-speed 3D-printed joints
doi https://doi.org/10.52842/conf.ecaade.2018.2.039
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 39-46
summary Geometric differentiation is no longer a production setback for industrial grade architectural components. This paper introduces a design and fabrication workflow for non-repetitive large-scale space frame structures composed of custom-manufactured nodes, which exploits the advantages of latest advancements in 3D-printing technology. By integrating design, fabrication and material constraints into a computational methodology, the presented approach addresses additive manufacturing of functional industry-grade parts in short time, high speed and low cost. The resulting case study of a 4.5 x 4.5 x 2.5 m lightweight kite structure comprises 1380 versatile fully-customised connectors and outlines the manifold potential of additive manufacturing for architecture much bigger than the machine built space. First, after briefly introducing space frames in architecture, this paper discusses the computational framework of generating irregular space frames and parametric joint design. Second, it examines the advantages of MJF printing in conjunction with integrating smart sequencing details for the following assembly process. Finally, a conclusive outlook is given on improvements and further developments for bespoke 3D-printed space frame structures.
keywords 3D-printing; Multi-Jet Fusion; Space Frame; Graded Subdivision
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2018_437
id ecaade2018_437
authors Mostafavi, Sina, Bier, Henriette, N. Kemper, Benjamin and L. Fischer, Daniel
year 2018
title Robotic Materialization of Architectural Hybridity - Modelling, Computation and Robotic Production of Multi-materiality
doi https://doi.org/10.52842/conf.ecaade.2018.2.301
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 301-308
summary Considering both architectural and constructional aspects of the built environment, hybridity or multi-materiality is essential to generate functional habitable spaces. Buildings consist of subsystems that each require different and sometimes conflicting material attributes and behaviours. In this context, expanding the solution space for material properties in architectural applications can be achieved through the integration of innovative design computation and production methods. With this focus, the paper presents prototyping processes and frames a discourse on robotic materialisation of architectural hybridity, ranging from micro or material to macro or component scales. The paper discusses three case studies, each with a specific focus on digital modelling, computation and robotic production of hybrid systems. The conclusion outlines how robotic fabrication of architectural multi-materiality redefines, informs and extends methods of design computation and materialisation.
keywords Hybridity; Multimode robotic production; Robotic 3D Printing; Robotic subtractive manufacturing; Material computation; Multi-materiality
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2018_409
id ecaade2018_409
authors Sousa, José Pedro, Azambuja Varela, Pedro de, Carvalho, Jo?o, Santos, Rafael and Oliveira, Manuel
year 2018
title Mass-customization of Joints for Non-Standard Structures through Additive Manufacturing - The Trefoil and the TriArch projects
doi https://doi.org/10.52842/conf.ecaade.2018.1.197
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 197-204
summary Due to recent advancements, additive manufacturing technologies (AM) have finally addressed the scale and materiality in architecture. The exploration of its capabilities has balanced between the idea of printing entire structures and buildings, and that of printing just a set of selected parts that will integrate and affect the final construction. In the context of the latter approach, this paper present a research work developed by the Digital Fabrication Laboratory (DFL) at FAUP, which is focused in the design and fabrication of non-standard structures. By discussing the relevance of non-standardization in architecture, the paper describes and illustrates two projects that explore the mass production of customized joints through computational design methods and AM technologies - the TREFOIL and the TRI-ARCH structures. By focusing the attention just in the smallest component of a structure, the paper argues about the short-term potential of the real impact of AM technologies in the design thinking and materialization of architectural structures.
keywords Non-standard structures; Additive Manufacturing; 3D Printing; Computational Design; Mass Customization
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_232
id ecaade2018_232
authors Al Bondakji, Louna, Chatzi, Anna-Maria, Heidari Tabar, Minoo, Wesseler, Lisa-Marie and Werner, Liss C.
year 2018
title VR-visualization of High-dimensional Urban Data
doi https://doi.org/10.52842/conf.ecaade.2018.2.773
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 773-780
summary The project aims to investigate the possibility of VR in a combination of visualizing high-dimensional urban data. Our study proposes a data-based tool for urban planners, architects, and researchers to 3D visualize and experience an urban quarter. Users have a possibility to choose a specific part of a city according to urban data input like "buildings, streets, and landscapes". This data-based tool is based on an algorithm to translate data from Shapefiles (.sh) in a form of a virtual cube model. The tool can be scaled and hence applied globally. The goal of the study is to improve understanding of the connection and analysis of high-dimensional urban data beyond a two-dimensional static graph or three-dimensional image. Professionals may find an optimized condition between urban data through abstract simulation. By implementing this tool in the early design process, researchers have an opportunity to develop a new vision for extending and optimizing urban materials.
keywords Abstract Urban Data Visualization; Virtual Reality; Geographical Information System
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2018_1867
id sigradi2018_1867
authors Alawadhi, Mohammad; Yan, Wei
year 2018
title Geometry from 3D Photogrammetry for Building Energy Modeling
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 631-637
summary Building energy modeling requires skilled labor, and there is a need to make environmental assessments of buildings more efficient and accessible for architects. A building energy model is based on collecting data from the real, physical world and representing them as a digital model. Recent digital photogrammetry tools can reconstruct real-world geometry by transforming photographs into 3D models automatically. However, there is a lack of accessible workflows that utilize this technology for building energy modeling and simulations. This paper presents a novel methodology to generate a building energy model from a photogrammetry-based 3D model using available tools and computer algorithms.
keywords 3D scanning; Building energy modeling; Building energy simulation; Digital photogrammetry; Photo-to-BEM
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_237
id ecaade2018_237
authors Beir?o, José, Mateus, Nuno and Siopa Alves, Jo?o
year 2018
title Modular, Flexible, Customizable Housing and 3D Printed - An experiment in architectural education
doi https://doi.org/10.52842/conf.ecaade.2018.1.381
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 381-390
summary Technological developments in construction always bring new expectations in terms of design possibilities. The use of digital tools both in design exploration and applied to explore new forms of computer controlled manufacture provide opportunities for the emergence of new tectonics. Because these transformations change our construction reality fast and with impacts never seen before, it is important that architectural education follows such change and prepares students for what will be their future really, making them capable to accept and incorporate the tectonic implications of digital tools and construction methods in the way they design. This paper shows a tutored approach to mass customized housing resorting to 3D printed parametric modular construction.Please write your abstract here by clicking this paragraph.
keywords caad education; mass customization; 3D printed housing
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2018_342
id caadria2018_342
authors Bhagat, Nikita, Rybkowski, Zofia, Kalantar, Negar, Dixit, Manish, Bryant, John and Mansoori, Maryam
year 2018
title Modulating Natural Ventilation to Enhance Resilience Through Modifying Nozzle Profiles - Exploring Rapid Prototyping Through 3D-Printing
doi https://doi.org/10.52842/conf.caadria.2018.2.185
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 185-194
summary The study aimed to develop and test an environmentally friendly, easily deployable, and affordable solution for socio-economically challenged populations of the world. 3D-printing (additive manufacturing) was used as a rapid prototyping tool to develop and test a façade system that would modulate air velocity through modifying nozzle profiles to utilize natural cross ventilation techniques in order to improve human comfort in buildings. Constrained by seasonal weather and interior partitions which block the ability to cross ventilate, buildings can be equipped to perform at reduced energy loads and improved internal human comfort by using a façade system composed of retractable nozzles developed through this empirical research. This paper outlines the various stages of development and results obtained from physically testing different profiles of nozzle-forms that would populate the façade system. In addition to optimizing nozzle profiles, the team investigated the potential of collapsible tube systems to permit precise placement of natural ventilation directed at occupants of the built space.
keywords Natural ventilation; Wind velocity; Rapid prototyping; 3D-printing; Nozzle profiles
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2018_433
id ecaade2018_433
authors Daher, Elie, Kubicki, Sylvain and Pak, Burak
year 2018
title Participation-based Parametric Design in Early Stages - A participative design process for spatial planning in office building
doi https://doi.org/10.52842/conf.ecaade.2018.1.429
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 429-438
summary The term participation has been used to define different activities, such as civil debate, communication, consultation, delegation, self-help construction, political decisions. However, participation in design started from the idea that individuals whom being affected by a design project must contribute to the design process. Recently, designers have been moving closer to the future users and developing new ways to empower them to get involved in the design process. In this paper we rethink the way the early design process is developed in a participatory approach thanks to parametric methods. A use case is proposed showing the potential of parametric design methods to empower the participation of users in the design of their facilities. The use case is dealing in particular with the spatial planning of an office building where the users together with the spatial planning team are able to design the layout spatial configuration by 1) fixing the objectives, 2) manipulating the model, 3)modifying some parameters, 4) visualizing the iterations and evaluating in a real-time each solution in an interactive 3D environment and together with facility managers 5) choosing the configuration of the spatial layout.
keywords Computational design; Participatory design; Optimization ; Parametric design
series eCAADe
email
last changed 2022/06/07 07:56

_id sigradi2018_1412
id sigradi2018_1412
authors de Oliveira Gomes, Emerson Bruno; da Silva Machado, Rodrigo Carlos; Machado Gomes, Cristiani; de Souza Xavier, Luis Gustavo
year 2018
title The Virtual Reality as a tool to analyze modifications in the architecture of the city. Case study: the historical center of the city of Belém-Pará.
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 860-865
summary This paper presents the partial results of a research that experiments the use of Virtual Reality (VR) in the analysis of future interventions in the architecture of the city of Belém. The objective was the virtual reconstruction of part of the port area of the city, as it was about 100 years. The methods include a historical survey of the site, visits to obtain photographs and measurements, as well as the digital reconstruction of buildings (external faces only). The experiment used Sketchup software for modeling, Unity 3D for rendering and navigation, and HTC Vive glasses for immersion.
keywords Virtual reality; Architecture; History; Engine games
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_295
id ecaade2018_295
authors Dezen-Kempter, Eloisa, Cogima, Camila Kimi, Vieira de Paiva, Pedro Victor and Garcia de Carvalho, Marco Antonio
year 2018
title BIM for Heritage Documentation - An ontology-based approach
doi https://doi.org/10.52842/conf.ecaade.2018.1.213
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 213-222
summary In the recent decades, the high-resolution remote sensing, through 3D laser scanning and photogrammetry benefited historic buildings maintenance, conservation, and restoration works. However, the dense surface models (DSM) generated from the data capture have nonstructured features as lack of topology and semantic discretization. The process to create a semantically oriented 3D model from the DSM, using the of Building Information Model technology, is a possibility to integrate historical information about the life cycle of the building to maintain and improving architectural valued building stock to its functional level and safeguarding its outstanding historical value. Our approach relies on an ontology-based system to represent the knowledge related to the building. Our work outlines a model-driven approach based on the hybrid data acquisition, its post-processing, the identification of the building' main features for the parametric modeling, and the development of an ontological map integrated with the BIM model. The methodology proposed was applied to a large-scale industrial historical building, located in Brazil. The DSM were compared, providing a qualitative assessment of the proposed method.
keywords Reality-based Surveying; Ontology-based System; BIM; Built heritage management
series eCAADe
email
last changed 2022/06/07 07:55

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id ecaade2018_145
id ecaade2018_145
authors Fukuda, Tomohiro, Zhu, Yuehan and Yabuki, Nobuyoshi
year 2018
title Point Cloud Stream on Spatial Mixed Reality - Toward Telepresence in Architectural Field
doi https://doi.org/10.52842/conf.ecaade.2018.2.727
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 727-734
summary In remote meetings that involve the study of buildings and cities, sharing three-dimensional (3D) virtual spatial of buildings and cities is just as necessary as sharing the appearances and voices of meeting participants. Because of this, system development and pilot projects have attempted to share 3D virtual models via the internet in real-time but is still insufficient compared with face-to-face meeting. Therefore, this research explores the applicability of a spatial mixed reality (MR) system that displays point cloud streams to realize 3D remote meeting in architecture and urban fields. MR is a new technology that enables 3D presentations of various information, combining the physical and virtual worlds. One MR method is telepresence, which is expected to give people a way to communicate remotely as if face to face in a realistic way. We first developed a MR system named PcsMR (Point cloud stream on mixed reality) to display point cloud streams. The PcsMR system's operation consists of generating and transferring a point cloud stream and then rendering a point cloud stream using MR. The PcsMR acquired the point cloud stream in real-time using Kinect for Windows v2 and transferred it to Microsoft HoloLens, which uses optical see-through MR. Then we constructed two prototypes based on PcsMR and carried out pilot projects. Through observing the experiments, application possibilities for architecture and urban fields are found in meetings and communications that share real-time 3D objects and include the movement of remote participants and objects. The proposed method was evaluated feasible and effective.
keywords Telepresence; Mixed reality; Point cloud stream; Remote meeting; Real time
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2018_104
id ecaade2018_104
authors Gürsoy, Benay
year 2018
title From Control to Uncertainty in 3D Printing with Clay
doi https://doi.org/10.52842/conf.ecaade.2018.2.021
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 21-30
summary The use of digital fabrication tools can extend beyond the seamless materialization of the digital model and can continuously inform design ideation through emerging material qualities. Exploring the implications of an approach to digital fabrication that is not based on imposed and rigorous formalisms but on unique and contextual ones constitutes the research agenda. Within this framework, the focus of this paper is on 3D printing with clay. Considering matter not as the static and passive outcome of digitally predetermined form, but as a design generator, a case study on both the materials and tools employed in 3D printing with clay is presented.
keywords Digital fabrication; additive manufacturing; 3D printing with clay; material computing; uncertainty
series eCAADe
email
last changed 2022/06/07 07:49

_id ecaade2018_141
id ecaade2018_141
authors Hermund, Anders, Klint, Lars Simon, Bundgaard, Ture Slot and Noël Meedom Meldgaard Bj?rnson-Langen, Rune
year 2018
title The Perception of Architectural Space in Reality, in Virtual Reality, and through Plan and Section Drawings - A case study of the perception of architectural atmosphere
doi https://doi.org/10.52842/conf.ecaade.2018.2.735
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 735-744
summary This paper presents the findings from a comparative study of an architectural space communicated as the space itself and its two different representations, i.e. a virtual reality model and traditional plan and section drawings. Using eye tracking technology in combination with qualitative questionnaires, a case study of an architectural space is investigated in physical reality, a virtual reality 3D BIM model, and finally through representation of the space in plan and section drawings. In this study, the virtual reality scenario seems closer to reality than the experience of the same space experienced through plan and section drawings. There is an overall higher correlation of both the conscious reflections and the less conscious behaviour between the real physical architectural space and the virtual reality space, than there is between the real space and the space communicated through plan and section drawings. We can conclude that the scenario with the best overall size estimations, compared to the actual measures, is the virtual reality scenario. The paper further discusses the future applications of virtual reality in architecture.
keywords Architectural representation; Virtual Reality; Perception; Tradition
series eCAADe
email
last changed 2022/06/07 07:49

_id caadria2018_270
id caadria2018_270
authors Houda, Maryam and Reinhardt, Dagmar
year 2018
title Structural Optimisation for 3D Printing Bespoke Geometries
doi https://doi.org/10.52842/conf.caadria.2018.1.235
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 235-244
summary Current advances in 3D printing technology enable novel design explorations with the potential to inform printing deposition through generative scripting and structural performance analysis. This paper presents ongoing research that involves three scales of operation; a global geometry for multi-skin cellular mesh densities; localised skin-porosity detailing, and material structural optimisation. Centering on a chair as a test case scenario, the research explores the affordances of a serialised, multi-material 3D printing process in the context of digital instruction, customisation, and material efficiency. The paper discusses two case studies with consecutive optimisation, and outlines the benefits and limitations of 3D printing for structural optimisation and multi-material grading in the additive process.
keywords 3D Printing; Bespoke Complexity; Digital Instruction; Mass Customisation; Multi-Material Grading; Robotic Deposition; Structural Optimisation
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2018_434
id ecaade2018_434
authors Hünkar, Ertunç and Figueiredo, Bruno Acácio Ferreira
year 2018
title 3D Printing of High Strength and Multi-Scaled Fragmented Structures
doi https://doi.org/10.52842/conf.ecaade.2018.1.173
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 173-178
summary Our research aims to push the limits of 3D printing towards the structural design and optimization. Additive manufacturing has an unique feature which is printing multi-faced complex geometries as easy as simple ones. Therefore additive manufacturing creates the chance of producing really small scaled complex forms. In a structural network, it can be easily understood that the more geometric variations to respond stress, the more adaptive structure will become to respond structural needs. The structural reaction is to be fictionalized by procedural operations and analysis that will be a tool to design multi-scaled fragmented structures. Those operations is to use the structural analysis and material reactions. Their iteration with the overall geometry will form the geometric generations. However the verification of the generations as outcomes of a real 3D printer is crucial. To verify, the precision of additive manufacturing should be sensitive enough that the structural element will function as it's simulated in computer with the algorithm. The sensitivity is important because, even couple of micro-sized problems can cause bigger ones in the structural element itself. The combination of all these variables can enable an initial geometry, to be able to adapt the stuructural needs in every additive generation.
keywords Additive Manufacturing(AM); Structural Optimization; Selective Laser Sintering(SLS); Structural Design; Shape Grammars; Design Computation
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2018_125
id ecaade2018_125
authors Khoo, Chin Koi and Shin, Jae-Won
year 2018
title Designing with Biomaterials for Responsive Architecture - A soft responsive "bio-structural" hydrogel skin
doi https://doi.org/10.52842/conf.ecaade.2018.2.285
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 285-292
summary Synthetic biomaterials are not only widely explored in tissue engineering, but also present important opportunities in responsive architecture, especially soft structures and skins. In this paper we present how water-containing hydrogels can be adapted to digital fabrication techniques to design a soft responsive skin with integrated skeleton and surface. This research project details preliminary investigation into how tough hydrogels with different material properties can be designed and incorporated into laser-cutting and 3D printing methods typically used in architectural design. The outcome of this research produces an early prototype of thermally sensitive, tough hydrogel skin that responds to environmental stimuli such as temperature and moisture. Our work provides initial insights into how a soft responsive "bio-structural" architectural skin can be designed by integrating actuation, structure, and skins.
keywords Biomaterials; digital fabriication; hydrogel; responsive architecture
series eCAADe
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_482354 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002