CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 628

_id sigradi2018_1879
id sigradi2018_1879
authors Danesh Zand, Foroozan; Baghi, Ali; Kalantari, Saleh
year 2018
title Digitally Fabricating Expandable Steel Structures Using Kirigami Patterns
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 724-731
summary This article presents a computational approach to generating architectural forms for large spanning structures based on a “paper-cutting” technique. In this traditional artform, a flat sheet is cut and scored in such a way that a small application of force prompts it to expand into a three-dimensional structure. To make these types of expandable structures feasible at an architectural scale, four challenges had to be met during the research. The first was to map the kinetic properties of a paper-cut model, investigating formative parameters such as the width and frequency of cuts to determine how they affect the resulting structure. The second challenge was to computationally simulate the paper-cut structure in an accurate fashion. We accomplished this task using finite element analysis in the Ansys software platform. The third challenge was to create a prediction model that could precisely forecast the characteristics of a paper-cutting pattern. We made significant strides in this demanding task by using a data-mining approach and regression analysis through 400 simulations of various cutting patterns. The final challenge was to verify the efficiency and accuracy of our prediction model, which we accomplished through a series of physical prototypes. Our resulting computational paper-cutting system can be used to estimate optimal cutting patterns and to predict the resulting structural characteristics, thereby providing greater rigor to what has previously been an ad-hoc and experimental design approach.
keywords Transformable Paper-cut; Design method; Prediction Model; Regression analysis; Physical prototype
series SIGRADI
email
last changed 2021/03/28 19:58

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id acadia18_336
id acadia18_336
authors Forren, James; Nicholas, Claire
year 2018
title Lap, Twist, Knot. Intentionality in digital-analogue making environments
doi https://doi.org/10.52842/conf.acadia.2018.336
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 336-341
summary This paper discusses a theoretical approach and method of making in computational design and construction. The project examines digital and analogue building practices through a social anthropological and STS lens to better understand the use of technology in complex making environments. We position this with respect to contemporary investigations of materials in architecture which use physical and virtual prototyping and collaborative building. Our investigation extends this work by parsing complex making through ethnographic analysis. In doing so we seek to recalibrate computational design methods which privilege rote execution of digital form. This inquiry challenges ideas of agency and intention as ‘enabled’ by new technologies or materials. Rather, we investigate the troubling (as well as extension) of explicit designer intentions by the tacit intentions of technologies. Our approach is a trans-disciplinary investigation synthesizing architectural making and ethnographic analysis. We draw on humanistic and social science theories which examine activities of human-technology exchange and architectural practices of algorithmic design and fabrication. We investigate experimental design processes through prototyping architectural components and assemblies. These activities are examined by collecting data on human-technology interactions through field notes, journals, sketches, and video recordings. Our goal is to foster (and acknowledge) more complex, socially constructed methods of design and fabrication. This work in progress, using a cement composite fabric, is a preliminary study for a larger project looking at complex making in coordination with public engagement.
keywords work in progress, illusory dichotomies, design theory & history, materials/adaptive systems, collaboration, hybrid practices
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id ecaade2018_169
id ecaade2018_169
authors Kasahara, Maki, Matsushita, Kiwa and Mizutani, Akihiro
year 2018
title Learning from Generative Design System in the 60's - Case Study of Agricultural City Project by Kisho Kurokawa
doi https://doi.org/10.52842/conf.ecaade.2018.2.095
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 95-102
summary The concept of generative design in Architecture and Urbanism can be found in the 60's before the wide availability of computer technology. This paper decodes one of the urban projects by Metabolist in 1960, which was intended to be a generative system applicable to other sites and evolves over time. Through our analysis, we de-code the formulation process, and verified our hypothesis by re-coding into the program using the software, Rhinoceros and Grasshopper. We found that the determinate factors rule more at the macro level of the project, but the parameters are set by taking the local conditions into account. At the micro level, the system leaves more freedom to accommodate various needs, reflecting the philosophy of the Metabolists. The investigation on this historical predecessor can provide useful insights for parameter settings in future generative system design.
keywords Generative Design; Grasshopper; Kisho Kurokawa
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia18_166
id acadia18_166
authors Kvochick, Tyler
year 2018
title Sneaky Spatial Segmentation. Reading Architectural Drawings with Deep Neural Networks and Without Labeling Data
doi https://doi.org/10.52842/conf.acadia.2018.166
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 166-175
summary Currently, it is nearly impossible for an artificial neural network to generalize a task from very few examples. Humans, however, excel at this. For instance, it is not necessary for a designer to see thousands or millions of unique examples of how to place a given drawing symbol in a way that meets the economic, aesthetic, and performative goals of the project. In fact, the goals can be (and usually are) communicated abstractly in natural language. Machine learning (ML) models, however, do need numerous examples. The methods that we explore here are an attempt to circumvent this in order to make ML models more immediately useful.

In this work, we present progress on the application of contemporary ML techniques to the design process in the architecture, engineering, and construction (AEC) industry. We introduce a technique to partially circumvent the data hungriness of neural networks, which is a significant impediment to their application outside of the ML research community. We also show results on the applicability of this technique to real-world drawings and present research that addresses how some fundamental attributes of drawings as images affect the way they are interpreted in deep neural networks. Our primary contribution is a technique to train a neural network to segment real-world architectural drawings after using only generated pseudodrawings.

keywords full paper, representation + perception, computation, ai & machine learning
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id ecaaderis2023_45
id ecaaderis2023_45
authors Morton, David, Ahmed, Tarek MF and Humphery, Richard
year 2023
title BIM and Teaching in Architecture: Current thinking and approaches
source De Luca, F, Lykouras, I and Wurzer, G (eds.), Proceedings of the 9th eCAADe Regional International Symposium, TalTech, 15 - 16 June 2023, pp. 105–115
summary Increasing use of BIM has represented a continuing shift in traditional assumptions on how we navigate the design process. BIM is affording the student the ability to gain a greater understanding of their design ideas via the exploration of scale, spatial organisation and structure, amongst many other design layers, in increasing levels of detail, at the same point in the design process. Architectural education is at a delayed tipping point where architectural students are increasingly looking towards BIM to streamline their design process drawn by the production of realistic visualisation, but with a lack of knowledge and skill in its application. With a lack of guidance and understanding around the application of BIM, the use of BIM in this manner overlooks the potential of BIM to construct and test virtual simulations of proposed schemes, to support design enquiry. A historical concern for the pedagogy constructed around the students’ design process is the application of methods and techniques that support the progression through the design process, (Ambrose, 2014; dash mei & Safari, 2018). This study examines the design process of architectural students and the interaction between analogue and digital methods used in design. These primary modes of communication, offer the opportunity to query the roles and rules of traditional architectural conventions around ‘problem finding’ and ‘problem solving’, challenging the ‘traditional’ design process examined by pioneers like Bruner (1966) and Schon (1987). These approaches are distilled from the findings of the study and presented as guidance to those teaching in architectural aBIMemia to align pedagogic goals to methods of abstraction in this new era of design education reconsidering digital methods in design.
keywords BIM, BIM, Design Process, Architecture, Learning
series eCAADe
email
last changed 2024/02/05 14:28

_id caadria2022_278
id caadria2022_278
authors Ortner, F. Peter and Tay, Jing Zhi
year 2022
title Optimizing Design Circularity: Managing Complexity in Design for Circular Economy Through Single and Multi-Objective Optimisation
doi https://doi.org/10.52842/conf.caadria.2022.1.191
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 191-200
summary This paper advances the application of computational optimization to design for circular economy (CE) by comparing results of scalarized single-objective optimization (SOO) and multi-objective optimization (MOO) to a furniture design case study. A framework integrating both methods is put forward based on results of the case study. Existing design frameworks for CE emphasize optimization through an iterative process of manual assessment and redesign (Ellen MacArthur Foundation, 2015). Identifying good design solutions for CE, however, is a complex and time-consuming process. Most prominent CE design frameworks list at least nine objectives, several of which may conflict (Reike et al., 2018). Computational optimization responds to these challenges by automating search for best solutions and assisting the designer to identify and manage conflicting objectives. Given the many objectives outlined in circular design frameworks, computational optimisation would appear a priori to be an appropriate method. While results presented in this paper show that scalarized SOO is ultimately more time-efficient for evaluating CE design problems, we suggest that given the presence of conflicting circular design objectives, pareto-set visualization via MOO can initially better support designers to identify preferences.
keywords Design for Circular Economy, Computational Optimisation, Sustainability, Design Optimisation, SDG 11, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id ijac201816405
id ijac201816405
authors Poustinch, Ebrahimi
year 2018
title Subtractive digital fabrication with actual robot and virtual material using a MARI platform
source International Journal of Architectural Computing vol. 16 - no. 4, 281-294
summary This article presents a project-based research study using a new hybrid augmented reality platform called the Mixed Architectural Robotic Interface. Using the Mixed Architectural Robotic Interface as a mixture of different software and hardware platforms, ranging from design/modeling software, simulation engine, and an augmented reality application, the designer would be able to evaluate the possibilities/limitations of the fabrication, in real time and as part of the design. This method advances designer’s understanding of the fabrication equipment as an input for the design decision-making process. This article demonstrates the potential of a virtual/actual hybridized platform as a new medium to design, simulate, and evaluate, in order to enhance the digital design and fabrication. Introducing the possibility of real-time communication between the digital design software and the fabrication platforms as well as the augmented reality simulation of the fabrication process, the Mixed Architectural Robotic Interface enables designers to test the fabrication process with the fabrication equipment in the early stages of the design process. This method makes it possible to move beyond the traditional limitations of machines pursuing “un-expected creativity,” without any additional time or cost for the process. Using the virtual material for fabrication, the Mixed Architectural Robotic Interface reduces the time and cost of having multiple iterations and encourages the hands-on experimental use of the fabrication tool (in this article robotic/computer numeric control milling) not only as a production tool but also as a design study tool.
keywords Design, robotics, augmented reality, digital fabrication, computer numeric control milling, virtual material
series journal
email
last changed 2019/08/07 14:04

_id acadia18_444
id acadia18_444
authors Sabin, Jenny; Pranger, Dillon; Binkley, Clayton; Strobel, Kristen; Liu, Jingyang (Leo)
year 2018
title Lumen
doi https://doi.org/10.52842/conf.acadia.2018.444
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 444-455
summary This paper documents the computational design methods, digital fabrication strategies, and generative design process for Lumen, winner of MoMA & MoMA PS1’s 2017 Young Architects Program. The project was installed in the courtyard at MoMA PS1 in Long Island City, New York, during the summer of 2017. Two lightweight 3D digitally knitted fabric canopy structures composed of responsive tubular and cellular components employ recycled textiles, photo-luminescent and solar active yarns that absorb and store UV energy, change color, and emit light. This environment offers spaces of respite, exchange, and engagement as a 150 x 75-foot misting system responds to visitors’ proximity, activating fabric stalactites that produce a refreshing micro-climate. Families of robotically prototyped and woven recycled spool chairs provide seating throughout the courtyard. The canopies are digitally fabricated with over 1,000,000 yards of high tech responsive yarn and are supported by three 40+ foot tensegrity towers and the surrounding matrix of courtyard walls. Material responses to sunlight as well as physical participation are integral parts of our exploratory approach to the 2017 YAP brief. The project is mathematically generated through form-finding simulations informed by the sun, site, materials, program, and the material morphology of knitted cellular components. Resisting a biomimetic approach, Lumen employs an analogic design process where complex material behavior and processes are integrated with personal engagement and diverse programs. The comprehensive installation was designed by Jenny Sabin Studio and fabricated by Shima Seiki WHOLEGARMENT, Jacobsson Carruthers, and Dazian with structural engineering by Arup and lighting by Focus Lighting.
keywords full paper, materials & adaptive systems, digital fabrication, flexible structures, performance + simulation
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id sigradi2023_342
id sigradi2023_342
authors Stumpp, Monika Maria, Braga, Gisele Pinna, Souza, Caroline Morais de and Manica, Carlo Rossano
year 2023
title BIM Modeling: Government Guidance in Three Brazilian Notebooks
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 589–600
summary This article presents preliminary results of a research under development at the Federal University of Rio Grande do Sul on BIM notebooks. It aims to study notebooks produced by Brazilian government agencies to identify characteristics and focuses of the content presented. In this step, notebooks from the states of Santa Catarina (2018), Paraná (2018) and the Federal District (2020) were mapped. Such notebooks were prepared from 2018 and define guidelines for contracting and elaborating public building projects developed based on the BIM methodology in order to satisfactorily meet the needs of the States within the scope of the Executive Branch in relation to public building projects developed in BIM . They are also used as annexes in public notices, for contracting projects, works and services developed in BIM.
keywords BIM, documentation, Brazilian notebooks, Categories, Analysis
series SIGraDi
email
last changed 2024/03/08 14:07

_id acadia18_82
id acadia18_82
authors Sun, Chengyu; Zheng, Zhaohua; Sun, Tongyu
year 2018
title Hybrid Fabrication. A free-form building process with high on-site flexibility and acceptable accumulative error
doi https://doi.org/10.52842/conf.acadia.2018.082
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 82-87
summary Although digital fabrication has a booming development in the building industry, especially in freeform building, its further application in onsite operations is still limited because of the huge flexibility required in programming. On the contrary, traditional manual fabrication onsite deals perfectly with problems that always accompany fatal accumulative errors in freeform building. This study explores a hybrid fabrication paradigm to take advantage of both in an onsite freeform building project, in which there is a cycling human–computer interactive process consisting of manual operation and computer guidance in real time. A Hololens-Kinect system in a framework of typical project camera systems is used in the demonstration. When human builders perceive, decide, and operate the irregular foam bricks in a complex onsite environment, the computer keeps updating the current form through 3D scanning and prompting the position and orientation of the next brick through augmented display. From a starting vault, the computer always fine tunes its control surface according to the gradually installed bricks and keeps following a catenary formula. Thus, the hybrid fabrication actually benefits from the flexibility based on human judgment and operation, and an acceptable level of accumulative error can be handled through computer guidance concerning the structural performance and formal accuracy.
keywords work in progress, vr/ar/mr, hybrid practices
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id ecaade2018_289
id ecaade2018_289
authors Sönmez, Orkun and Gönenç Sorguç, Arzu
year 2018
title Evaluating an Immersive Virtual Learning Environment for Learning How to Design in Human-Scale
doi https://doi.org/10.52842/conf.ecaade.2018.1.371
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 371-378
summary This paper presents a part of a thesis research conducted at METU. It proposes a method for evaluating the effects of an immersive virtual learning environment (IVLE) which is integrated in an architectural design/learning activity. Proposed IVLE application and design/learning activity were designed through a synthesis on constructive learning, problem-based learning, immersive technologies, and intended learning outcomes (ILOs) in learning how to design in human-scale. Immersive experience of bodily interactions and problem solving process are focused. Method of evaluation was also developed over this synthesis, and an evaluation rubric was created based on the SOLO taxonomy. According to the evaluation method, a before-and-after test was conducted within a case study involving a particular scenario of design exercise and interviews. Conclusions are based on the results of this case study.
keywords VR in architecture; immersive virtual learning environment; learning modalities; SOLO Taxonomy
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia18_260
id acadia18_260
authors Tish, Daniel; Schork, Tim; McGee, Wes
year 2018
title Topologically Optimized and Functionally Graded Cable Nets. New approaches through robotic additive manufacturing
doi https://doi.org/10.52842/conf.acadia.2018.260
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 260-265
summary Recent advancements in the realm of additive manufacturing technologies have made it possible to directly manufacture the complex geometries that are resultant from topological optimization and functionally graded material processes. Topological optimization processes are well understood and widely used within the realm of structural engineering and have been increasingly adopted in architectural design and research. However, there has been little research devoted to the topological optimization of cable nets and their fabrication through robotic additive manufacturing. This paper presents a design framework for the optimization of additively manufactured tensile cable nets that attempts to bridge between these two domains by reframing the scale of topological optimization processes. Instead of focusing solely on the topology optimization at the macro-scale of cable nets, this research develops a method to optimize the meso-scale topology and defines metamaterial units with different properties to be aggregated into a complex whole. This reorientation from the formal towards the material domain signals an engagement with morphogenetic modes of design that find formal expression through bottom-up material processes. In order to further investigate the emerging potentials of this reorientation, the presented method is validated through physical deformation tests, as well as applied to the design of a furniture-scale case study project realized through the use of robotic additive manufacturing of elastomeric materials
keywords work in progress, materials & adaptive systems, robotic production, computation, flexible structures
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id ecaade2018_166
id ecaade2018_166
authors Unger, Pawe³ and Rom?o, Luís
year 2018
title The Game of Urban Attractiveness - Shape Grammars and Cellular Automata Based Tool for Prediction of Human's Behaviour in Cities
doi https://doi.org/10.52842/conf.ecaade.2018.2.629
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 629-638
summary This paper presents a way to predict people's interest in a public space based on a space's "attractiveness" as a movement attractor. Two generative systems are integrated into the prediction model. The Cellular Automata (CA) is the core of simulation engine and the Shape Grammars (SG) is a descriptive language for the CA rules. Both, CA and SG exhibit complementary features counteracting each other's drawbacks. Having translated social behaviour into a set of rules, the CA algorithm applies them to distinguish people's leisure interest attractors from places with a minor attractiveness. The tool is designed to be used at various urban scales by city planners and venture capitalists. It is dedicated towards the early stage of planning process to evaluate the future attractiveness of places. The case study is located in the central district of Lisbon, Bairro Alto. One of the important aspects are description of the rules with SG and interpretation of the CA results. Implemented in Python for Grasshopper and visualised in Rhinoceros3D. The article does not present the final solution, rather is an experimental attempt to interpret and describe the already explored urban context of Cellular Automata.
keywords Behaviour Prediction; Cellular Automata; Shape Grammars; Space Attractiveness; Urban Simulation
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2018_209
id caadria2018_209
authors Yao, Jiawei, Lin, Yuqiong, Zhao, Yao, Yan, Chao, Li, Changlin and Yuan, Philip F.
year 2018
title Augmented Reality Technology based Wind Environment Visualization
doi https://doi.org/10.52842/conf.caadria.2018.1.369
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 369-377
summary Considering the outdoor environment at the initial stage of design process plays a significant role on future building performance. Augmented Reality (AR) technology applied in this research can integrate real world building morphology information and virtual world ventilation information seamlessly that rapidly and directly provides designers information for observation and evaluation. During the case study of "2017 Shanghai DigitalFUTURE" summer workshop, a research on augmented reality technology based wind environment visualization was carried on. The achievement with an application software not only showed the geometric information of the real world objects (such as buildings), but also the virtual wind environment has displayed. Thus, these two kinds of information can complement and superimpose each other. This AR technology based software brings multiple synthetic together, which can (1) visualize the air flow around buildings that provides designers rapid and direct information for evaluation; (2) deal with wind-environment-related data quantitatively and present in an intuitive, easy-to-interpret graphical way; and (3) be further developed as a visualization system based on built-in environments in the future, which contributes to rapid evaluation of a series of programs at the beginning of the building design.
keywords Environment visualization; Augmented reality technology; Fast response; Outdoor ventilation
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
doi https://doi.org/10.52842/conf.acadia.2021.530
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id sigradi2018_1628
id sigradi2018_1628
authors Agirbas, Asli
year 2018
title The Use of Multi-Software in Undergraduate Architectural Design Studio Education: A Case Study
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1059-1064
summary In the architectural design process, instead of using the computer programs effectively, the ability of choosing the most suitable program for the purpose takes place. However, different programs used in the design process serve different purposes. Therefore, the use of more than one program throughout the project design process arises. Every day the number of programs used increases rapidly. Hence, the designers find difficult to adapt this speed. The same applies to the students of architectural design studio course. Therefore, in this study with undergraduate architecture students, a pilot study focusing on the use of multi-software was conducted within the scope of architectural design studio. The process and outputs were evaluated.
keywords Use of multi-software; Contextual design; Architectural design education; CAAD
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia18_216
id acadia18_216
authors Ahrens, Chandler; Chamberlain, Roger; Mitchell, Scott; Barnstorff, Adam
year 2018
title Catoptric Surface
doi https://doi.org/10.52842/conf.acadia.2018.216
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 216-225
summary The Catoptric Surface research project explores methods of reflecting daylight through a building envelope to form an image-based pattern of light on the interior environment. This research investigates the generation of atmospheric effects from daylighting projected onto architectural surfaces within a built environment in an attempt to amplify or reduce spatial perception. The mapping of variable organizations of light onto existing or new surfaces creates a condition where the perception of space does not rely on form alone. This condition creates a visual effect of a formless atmosphere and affects the way people use the space. Often the desired quantity and quality of daylight varies due to factors such as physiological differences due to age or the types of tasks people perform (Lechner 2009). Yet the dominant mode of thought toward the use of daylighting tends to promote a homogeneous environment, in that the resulting lighting level is the same throughout a space. This research project questions the desire for uniform lighting levels in favor of variegated and heterogeneous conditions. The main objective of this research is the production of a unique facade system that is capable of dynamically redirecting daylight to key locations deep within a building. Mirrors in a vertical array are individually adjusted via stepper motors in order to reflect more or less intense daylight into the interior space according to sun position and an image-based map. The image-based approach provides a way to specifically target lighting conditions, atmospheric effects, and the perception of space.
keywords full paper, non-production robotics, representation + perception, performance + simulation, building technologies
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id ecaade2018_232
id ecaade2018_232
authors Al Bondakji, Louna, Chatzi, Anna-Maria, Heidari Tabar, Minoo, Wesseler, Lisa-Marie and Werner, Liss C.
year 2018
title VR-visualization of High-dimensional Urban Data
doi https://doi.org/10.52842/conf.ecaade.2018.2.773
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 773-780
summary The project aims to investigate the possibility of VR in a combination of visualizing high-dimensional urban data. Our study proposes a data-based tool for urban planners, architects, and researchers to 3D visualize and experience an urban quarter. Users have a possibility to choose a specific part of a city according to urban data input like "buildings, streets, and landscapes". This data-based tool is based on an algorithm to translate data from Shapefiles (.sh) in a form of a virtual cube model. The tool can be scaled and hence applied globally. The goal of the study is to improve understanding of the connection and analysis of high-dimensional urban data beyond a two-dimensional static graph or three-dimensional image. Professionals may find an optimized condition between urban data through abstract simulation. By implementing this tool in the early design process, researchers have an opportunity to develop a new vision for extending and optimizing urban materials.
keywords Abstract Urban Data Visualization; Virtual Reality; Geographical Information System
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_389
id ecaade2018_389
authors Algeciras-Rodriguez, Jose
year 2018
title Stochastic Hybrids - From references to design options through Self-Organizing Maps methodology.
doi https://doi.org/10.52842/conf.ecaade.2018.1.119
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 119-128
summary This ongoing research aims to define a general assisted design method to offer non-trivial design options, where form is produced by merging characteristics from initial reference samples collection that serves as an input set. This project explores design processes laying on the use of non-linear procedures and experiments with Self-Organizing Map (SOM), as neural networks algorithms, to generate geometries. All processes are applied to a set of models representing classic sculpture, whose characteristics are encoded by the SOM process. The result of it is a set of new geometry resembling characteristics from the original references. This method produces hybrid forms that acquire characteristics from several input references. The resulting hybrid entities are intended to be non-trivial solutions to specific design situations, so far, at the stage of this research, mainly formal requirements.
keywords Self-Orgnizing Maps; Cognitive Space; Design Options; Form Finding; Artificial Intelligence
series eCAADe
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_359954 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002