CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 615

_id caadria2018_083
id caadria2018_083
authors Luo, Dan, Wang, Jinsong and Xu, Weiguo
year 2018
title Robotic Automatic Generation of Performance Model for Non-Uniform Linear Material via Deep Learning
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 39-48
doi https://doi.org/10.52842/conf.caadria.2018.1.039
summary In the following research, a systematic approach is developed to generate an experiment-based performance model that computes and customizes properties of non-uniform linear materials to accommodate the form of designated curve under bending and natural force. In this case, the test subject is an elastomer strip of non-uniform sections. A novel solution is provided to obtain sufficient training data required for deep learning with an automatic material testing mechanism combining robotic arm automation and image recognition. The collected training data are fed into a deep combination of neural networks to generate a material performance model. Unlike most traditional performance models that are only able to simulate the final form from the properties and initial conditions of the given materials, the trained neural network offers a two-way performance model that is also able to compute appropriate material properties of non-uniform materials from target curves. This network achieves complex forms with minimal and effective programmed materials with complicated nonlinear properties and behaving under natural forces.
keywords Material performance model; Deep Learning; Robotic automation; Material computation; Neural network
series CAADRIA
email luo_dana@126.com
last changed 2022/06/07 07:59

_id ecaade2018_370
id ecaade2018_370
authors Abdelmohsen, Sherif, Massoud, Passaint, El-Dabaa, Rana, Ibrahim, Aly and Mokbel, Tasbeh
year 2018
title A Computational Method for Tracking the Hygroscopic Motion of Wood to develop Adaptive Architectural Skins
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 253-262
doi https://doi.org/10.52842/conf.ecaade.2018.2.253
summary Low-cost programmable materials such as wood have been utilized to replace mechanical actuators of adaptive architectural skins. Although research investigated ways to understand the hygroscopic response of wood to variations in humidity levels, there are still no clear methods developed to track and analyze such response. This paper introduces a computational method to analyze, track and store the hygroscopic response of wood through image analysis and continuous tracking of angular measurements in relation to time. This is done through a computational closed loop that links the smart material interface (SMI) representing hygroscopic response with a digital and tangible interface comprising a Flex sensor, Arduino kit, and FireFly plugin. Results show no significant difference between the proposed sensing mechanism and conventional image analysis tracking systems. Using the described method, acquiring real-time data can be utilized to develop learning mechanisms and predict the controlled motion of programmable material for adaptive architectural skins.
keywords Hygroscopic properties of wood; Adaptive architecture; Programmable materials; Real-time tracking
series eCAADe
email sherifmorad@aucegypt.edu
last changed 2022/06/07 07:54

_id acadia18_216
id acadia18_216
authors Ahrens, Chandler; Chamberlain, Roger; Mitchell, Scott; Barnstorff, Adam
year 2018
title Catoptric Surface
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 216-225
doi https://doi.org/10.52842/conf.acadia.2018.216
summary The Catoptric Surface research project explores methods of reflecting daylight through a building envelope to form an image-based pattern of light on the interior environment. This research investigates the generation of atmospheric effects from daylighting projected onto architectural surfaces within a built environment in an attempt to amplify or reduce spatial perception. The mapping of variable organizations of light onto existing or new surfaces creates a condition where the perception of space does not rely on form alone. This condition creates a visual effect of a formless atmosphere and affects the way people use the space. Often the desired quantity and quality of daylight varies due to factors such as physiological differences due to age or the types of tasks people perform (Lechner 2009). Yet the dominant mode of thought toward the use of daylighting tends to promote a homogeneous environment, in that the resulting lighting level is the same throughout a space. This research project questions the desire for uniform lighting levels in favor of variegated and heterogeneous conditions. The main objective of this research is the production of a unique facade system that is capable of dynamically redirecting daylight to key locations deep within a building. Mirrors in a vertical array are individually adjusted via stepper motors in order to reflect more or less intense daylight into the interior space according to sun position and an image-based map. The image-based approach provides a way to specifically target lighting conditions, atmospheric effects, and the perception of space.
keywords full paper, non-production robotics, representation + perception, performance + simulation, building technologies
series ACADIA
type paper
email cahrens@wustl.edu
last changed 2022/06/07 07:54

_id ecaade2018_232
id ecaade2018_232
authors Al Bondakji, Louna, Chatzi, Anna-Maria, Heidari Tabar, Minoo, Wesseler, Lisa-Marie and Werner, Liss C.
year 2018
title VR-visualization of High-dimensional Urban Data
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 773-780
doi https://doi.org/10.52842/conf.ecaade.2018.2.773
summary The project aims to investigate the possibility of VR in a combination of visualizing high-dimensional urban data. Our study proposes a data-based tool for urban planners, architects, and researchers to 3D visualize and experience an urban quarter. Users have a possibility to choose a specific part of a city according to urban data input like "buildings, streets, and landscapes". This data-based tool is based on an algorithm to translate data from Shapefiles (.sh) in a form of a virtual cube model. The tool can be scaled and hence applied globally. The goal of the study is to improve understanding of the connection and analysis of high-dimensional urban data beyond a two-dimensional static graph or three-dimensional image. Professionals may find an optimized condition between urban data through abstract simulation. By implementing this tool in the early design process, researchers have an opportunity to develop a new vision for extending and optimizing urban materials.
keywords Abstract Urban Data Visualization; Virtual Reality; Geographical Information System
series eCAADe
email minoo.heidaritabar@campus.tu-berlin.de
last changed 2022/06/07 07:54

_id sigradi2018_1476
id sigradi2018_1476
authors Brarda, María Cecilia
year 2018
title Type in motion: The representation of the illocutionary force through the expression of the kinetic typographic form
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1142-1149
summary The objective is to analyze how type in motion contributes to the representation and transmission of the illocutionary force of a statement in the field of communication and digital animation. This is a context characterized by being a hybrid of image and sound, of a esthetic and technological diversity and mixtures of representation techniques and animation of different types of motion graphics. The expressive form of the signs of writing is crossed by the variables time, movement and sound and from here their ability to transmit the illocutionary force is enhanced.
keywords Typography in movement; Illocutionary force; Kinetic writing; Digital animation; Typographic form
series SIGRADI
email mcbrarda@gmail.com
last changed 2021/03/28 19:58

_id ijac201816204
id ijac201816204
authors Gengnagel, Christoph; Riccardo La Magna, Mette Ramsgaard Thomsen and Martin Tamke
year 2018
title Shaping hybrids – Form finding of new material systems
source International Journal of Architectural Computing vol. 16 - no. 2, 91-103
summary Form-finding processes are an integral part of structural design. Because of their limitations, the classic approaches to finding a form – such as hanging models and the soap-film analogy – play only a minor role. The various possibilities of digital experimentation in the context of structural optimisation create new options for the designer generating forms, while enabling control over a wide variety of parameters. A complete mapping of the mechanical properties of a structure in a continuum mechanics model is possible but so are simplified modelling strategies which take into account only the most important properties of the structure, such as iteratively approximating to a solution via representations of kinematic states. Form finding is thus an extremely complex process, determined both by the freely selected parameters and by design decisions.
keywords Bending active, form finding, hybrid structures, simulation, textile architecture
series journal
email ric.lamagna@gmail.com
last changed 2019/08/07 14:03

_id acadia18_328
id acadia18_328
authors Kladeftira, Marirena; Shammas, Demetris; Bernhard, Mathias; Dillenburger, Benjamin
year 2018
title Printing Whisper Dishes. Large-scale binder jetting for outdoor installations
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 328-335
doi https://doi.org/10.52842/conf.acadia.2018.328
summary This research explores the design opportunities of a novel fabrication process for large scale architectural installations suitable for outdoor weather conditions. High resolution, bespoke geometries are easily fabricated at no extra cost in a continuous system using Binder Jet printing technology. The material properties of sandstone are considered a design drive for producing structural paths according to a finite element analysis. Several post processing materials are tested for strengthening the final geometry and providing a water resistant solution. The process is tested in a large, 1:1 sound installation of a pair of acoustic mirrors. First, this paper describes the specific potential and challenges of Binder Jet printing for outdoor applications. It, then, outlines the design principles of the sound device, the acoustic mirror, and their integration into a digital model. Finally, the computational design strategy is described, including topology optimization to reduce the weight/material and the integration of functional details
keywords work in progress, 3d printing, form finding, digital fabrication, building technologies
series ACADIA
type paper
email kladeftira@arch.ethz.ch
last changed 2022/06/07 07:51

_id caadria2018_050
id caadria2018_050
authors Lo, Tian Tian and Schnabel, Marc Aurel
year 2018
title Virtual & Augmented Studio Environment (VASE) - Developing the Virtual Reality Eco-System for Design Studios
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 443-452
doi https://doi.org/10.52842/conf.caadria.2018.1.443
summary Virtual Reality (VR) is being revived in major disciplines, including architecture. VR is no longer only employed for basic operations, such as construction of 3D models, dynamic renderings, closed-loop interaction, inside-out perspective and enhance sensory feedback. This paper explains how over the past twenty years technologies and software have evolved that a new eco-system for design processes have risen. This paper discusses how students made full use of both software and equipment in the whole design process; from ideas exploration to site analysis to form generation to design realization. Students have been exposed to a whole range of digital software tools in the beginning. As most of them were already familiar with modelling software, they have in particular been introduced to animation software, game engines and even 3D documentation software such as photogrammetry. Most importantly, they were led to IVE. The paper points out the benefits of adopting such methodology and the difficulties faced by the students at the various stages of the design process.
keywords Design Studio; Virtual Reality; Software and Equipment; Design Exchange
series CAADRIA
email skyduo@gmail.com
last changed 2022/06/07 07:59

_id acadia18_250
id acadia18_250
authors Seibold, Zach; Grinham, Jonathan; Geletina, Olga; Ahanotu, Onyemaechi; Sayegh, Allen; Weaver, James; Bechthold, Martin
year 2018
title Fluid Equilibrium: Material Computation in Ferrofluidic Castings
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 250-259
doi https://doi.org/10.52842/conf.acadia.2018.250
summary We present a computationally-based manufacturing process that allows for variable pattern casting through the use of ferrofluid – a mixture of suspended magnetic nanoparticles in a carrier liquid. The capacity of ferrofluid to form intricate spike and labyrinthine packing structures from ferrohydrodynamic instabilities is well recognized in industry and popular science. In this paper we employ these instabilities as a mold for the direct casting of rigid materials with complex periodic features. Furthermore, using a bitmap-based computational workflow and an array of high-strength neodymium magnets with linear staging, we demonstrate the ability to program the macro-scale pattern formation by modulating the magnetic field density within a single cast. Using this approach, it is possible to program specific patterns in the resulting cast tiles at both the micro- and macro-scale and thus generate tiled arrays with predictable halftone-like image features. We demonstrate the efficacy of this approach for a variety of materials typically used in the architecture, engineering, and construction industries (AEC) including epoxys, ceramics, and cements.
keywords full paper, materials & adaptive systems, digital fabrication, digital materials, physics
series ACADIA
type paper
email zseibold@gsd.harvard.edu
last changed 2022/06/07 08:00

_id ecaade2018_415
id ecaade2018_415
authors Shah, Anand and Sousa, José Pedro
year 2018
title A Robotically Fabricated Connection System as a Possible Solution for a Free-form "ROBO-WEB" Gridshell which Takes Inspirations from English Fan Vaulted Cathedrals
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 821-826
doi https://doi.org/10.52842/conf.ecaade.2018.1.821
summary Gridshell is a unique category of shell structures, which, by departing from a double-curved resistant form, concentrates the forces in its lattice members. Majority of the gridshell structures use quadrangular or triangular grid patterns because they can easily mesh and it is less complicated to resolve its details. This research project provides a unique robotically fabricated joinery system for free-form gridshells. The research project attempts to increase the versatility in terms of design and feasibility in terms of construction for future gridshell structures. It tries to merge the extremely efficient historical design principles with the new age design and construction methods. The lattice grid for the Robo-Web gridshell takes inspiration from the ribs of the English fan vaulted cathedrals. Based on the experiences gained through the research project the research concludes with a critical discussion of the practical applications and future scope of the free-form lattice grid and robotically fabricated joinery system.
keywords Gridshell; Robotics; Free-form; Fan-vaults
series eCAADe
email anandshah3193@gmail.com
last changed 2022/06/07 07:59

_id caadria2018_076
id caadria2018_076
authors Sun, Chengyu, Wang, Yuze, Zheng, Zhaohua, Sun, Tongyu and Ruiz, Laura
year 2018
title MR. SAP: An Assistant Co-working with Architects in a Tangible-Model-Based Design Process
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 555-564
doi https://doi.org/10.52842/conf.caadria.2018.1.555
summary To avoid interruption on architects' tangible-object-based design process, MR.SAP is being developed to co-work with architects as a cost-acceptable personal solution with tangible user interface, which can scan the tangible object, analyze its digital counterpart, and prompt visualized suggestions upon it through a portable projector in real time. It extends the user's capabilities of form perception, real time calculation, and operational positioning upon tangible objects, which can better serve his subjective aesthetic taste and design aims.
keywords mixed reality; projector and camera system; manual craft; co-working
series CAADRIA
email ibund@126.com
last changed 2022/06/07 07:56

_id ecaade2018_186
id ecaade2018_186
authors Wang, Sining and Crolla, Kristof
year 2018
title Interaction between Parametric Modelling and Criteria of Product Development in China's Non-standard Practice
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 345-354
doi https://doi.org/10.52842/conf.ecaade.2018.2.345
summary This paper questions the ideal digital paradigm of its applicability for non-standard architectural practice in China. Streamlined multi-disciplinary cooperation may constrain when facing a challenging construction context which notorious for its high speed, lack of craftsmanship, low budgets, and poor detailing. Living with this, however, a group of digital practitioners has successfully been able to complete several non-standard architectural projects with a complex form. An argument raises suggesting an essential part of their success lies in their alternative use of typical parametric models, which are adapted to create tolerance space between design, development, and implementation process in response to local challenges. Here, we study two non-standard cases from Chinese architectural practice HHDFUN. By analysing the project delivery processes, this paper ambitious to extract higher-level knowledge that will contribute to the professional practice and facilitate the extension of an expanded, yet purely digital design solution space into the challenging material world of local construction.
keywords HHDFUN; parametric model; solution space; product development; China's context
series eCAADe
email wangsining@link.cuhk.edu.hk
last changed 2022/06/07 07:58

_id caadria2018_316
id caadria2018_316
authors Yan, Chao, Zhang, Yunyu, Yuan, Philip F. and Yao, Jiawei
year 2018
title Virtual Motion - Shifting Perspective as an Instrument for Geometrical Construction
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 471-480
doi https://doi.org/10.52842/conf.caadria.2018.2.471
summary From the invention of projection to the emergence of digital technology, there's a clear correspondences among the transformations of visual representation paradigm in art, the developments of design instrument in architecture, and the human perception of time/space. Base on the examination of this particular historical trajectory, this paper focuses the working mechanism of shifting perspective as an alternative design instrument to explore the possibility of embedding time and motion into static form in digital age. Firstly, the paper reviews how the shifting perspective was introduced to represent space in modern western painting and photography. Then based on the research on shifting perspective, the paper develops a design tool, which would be able to translate motion into the particular geometrical feature of a generated 3D object. In the end, the paper brings further discussions about the formal and spatial effects brought by this new tool, and its potential to incorporate the perceptive image of human being into design process.
keywords Shape Study; Projective Geometry; Shifting Perspective; Motion; Time Dimension
series CAADRIA
email yanchao@tongji.edu.cn
last changed 2022/06/07 07:57

_id caadria2018_257
id caadria2018_257
authors Yousif, Shermeen and Yan, Wei
year 2018
title Clustering Forms for Enhancing Architectural Design Optimization
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 431-440
doi https://doi.org/10.52842/conf.caadria.2018.2.431
summary This work introduces a new system in architectural design optimization that integrates form diversity and clustering methods into the process. The first method we propose is an algorithm for rating design solutions according to their geometric correspondences, maximizing differences and enforcing diversity. In addition, we implement the K-means algorithm to cluster the resulting design forms into groups of similar forms, to substitute each group with one representative solution. The work aims to facilitate decision making and form evaluation for designers, leading to an interactive optimization process, and contributing to improving existing optimization models in architectural design research and practice. We modeled a dynamic system through prototyping, experimenting and test-case application. As a prototype development, the protocol was done through phases of: (1) parametric modeling, (2) conducting energy simulation and daylight analysis and running a generative system, and (3) developing an algorithm for form diversity and another for implementing K-means clustering. The results are illustrated and discussed in detail in the paper.
keywords Architectural Design Optimization; Form Diversity; K-Means Clustering
series CAADRIA
email shermeen@tamu.edu
last changed 2022/06/07 07:57

_id caadria2018_216
id caadria2018_216
authors Yuan, Philip F., Chen, Zhewen and Zhang, Liming
year 2018
title Form Finding for 3D Printed Pedestrian Bridges
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 225-234
doi https://doi.org/10.52842/conf.caadria.2018.1.225
summary Due to the highly interrelation between architecture and engineering involved in the early design stage of 3D printing, form-finding is the critical step in the large-scale 3D printing projects. This paper focused on the research of form-finding applied in large-scale 3D printed structures, specifically, in the design of two pedestrian bridges. A three-step form finding approach was introduced in this paper. Multiple numerical methods were involved in the approach to find an optimal solution for both aesthetics and structural design for two 3D printed pedestrian bridges. The application of the three steps of form-finding, which take consideration of material properties, site limitations, applied loads etc., to the design of the large-scale 3D printed bridges were discussed in details in this paper. The approach of form-finding in an early designing stage disused in this paper helps to understand the combination of architecture and structure engineering.
keywords Form Finding; 3D Printing; Structural Performance; Material Performance; Topology Optimization
series CAADRIA
email philipyuan007@tongji.edu.cn
last changed 2022/06/07 07:57

_id sigradi2018_1508
id sigradi2018_1508
authors Akta?, Begüm; Birgül Çolako?lu, M.
year 2018
title Systematic approach to design builds for freeform façade: AFA Cultural Center
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 176-182
summary The design and construction of the complex, irregularly shaped, and curvilinear building forms are also known as freeform architecture, have gained an interest form architects and engineers. This paper presents how freeform façade designs are defined with its curvilinear geometric characteristics and the systematic approach that is used to design and implement them. The proposed method incorporates product design and integral façade construction approach at AFA Cultural Center freeform façade implementation. Therefore, the paper aims to improve the viability of the proposed method and decreasing the gap between the other disciplines and architects in a systematic way without losing the creativity of the architects.
keywords  Parametric modeling; Systematic approach; Design thinking; System thinking; Freeform façade design
series SIGRADI
email begum.aktas@altinbas.edu.tr
last changed 2021/03/28 19:58

_id ecaade2018_389
id ecaade2018_389
authors Algeciras-Rodriguez, Jose
year 2018
title Stochastic Hybrids - From references to design options through Self-Organizing Maps methodology.
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 119-128
doi https://doi.org/10.52842/conf.ecaade.2018.1.119
summary This ongoing research aims to define a general assisted design method to offer non-trivial design options, where form is produced by merging characteristics from initial reference samples collection that serves as an input set. This project explores design processes laying on the use of non-linear procedures and experiments with Self-Organizing Map (SOM), as neural networks algorithms, to generate geometries. All processes are applied to a set of models representing classic sculpture, whose characteristics are encoded by the SOM process. The result of it is a set of new geometry resembling characteristics from the original references. This method produces hybrid forms that acquire characteristics from several input references. The resulting hybrid entities are intended to be non-trivial solutions to specific design situations, so far, at the stage of this research, mainly formal requirements.
keywords Self-Orgnizing Maps; Cognitive Space; Design Options; Form Finding; Artificial Intelligence
series eCAADe
email josealgeciras@gmail.com
last changed 2022/06/07 07:54

_id ijac201816406
id ijac201816406
authors As, Imdat; Siddharth Pal and Prithwish Basu
year 2018
title Artificial intelligence in architecture: Generating conceptual design via deep learning
source International Journal of Architectural Computing vol. 16 - no. 4, 306-327
summary Artificial intelligence, and in particular machine learning, is a fast-emerging field. Research on artificial intelligence focuses mainly on image-, text- and voice-based applications, leading to breakthrough developments in self-driving cars, voice recognition algorithms and recommendation systems. In this article, we present the research of an alternative graph- based machine learning system that deals with three-dimensional space, which is more structured and combinatorial than images, text or voice. Specifically, we present a function-driven deep learning approach to generate conceptual design. We trained and used deep neural networks to evaluate existing designs encoded as graphs, extract significant building blocks as subgraphs and merge them into new compositions. Finally, we explored the application of generative adversarial networks to generate entirely new and unique designs.
keywords Architectural design, conceptual design, deep learning, artificial intelligence, generative design
series journal
email as@hartford.edu
last changed 2019/08/07 14:04

_id ecaade2018_124
id ecaade2018_124
authors Asanowicz, Aleksander
year 2018
title Digital Architectural Composition in Virtual Space
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 703-710
doi https://doi.org/10.52842/conf.ecaade.2018.2.703
summary The paper is divided into two main parts. The first part refers to the history of attempts to use VR technology in the process of architectural space creation in a dynamic way. The second part presents the experiment carried out at our Faculty, in which we implemented VR in the Digital Architectural Composition course. This experiment was divided into two parts. In the both parts Google Blocks software was used. In the first part we have used the first exercises which was completed by students during the first semester in a traditional way (a cardboard mock-up) and then in the third semester as a digital model in Cinema 4D. It was a Solid form with. In the second part of this experiment we asked students to create a sketch of walk through space and they can created their own shapes in their design. The analysis of the results allows to formulate the thesis that there is a qualitative revolution in the area of human-computer interface. The main conclusion is that Virtual Reality eliminates the boundaries between the spectator and the space and that the idea - Designing Become a Place" is still actual.
keywords Architectural composition; virtual reality; direct design
series eCAADe
email asanowicz@gmail.com
last changed 2022/06/07 07:54

_id acadia18_36
id acadia18_36
authors Austin, Matthew; Matthews, Linda
year 2018
title Drawing Imprecision. The digital drawing as bits and pixels
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 36-45
doi https://doi.org/10.52842/conf.acadia.2018.036
summary This paper explores the consequences of digitizing the architectural drawing. It argues that the fundamental unit of drawing has shifted from “the line” to an interactive partnership between bits and pixels. It also reveals how the developmental focus of imaging technology has been to synthesize and imitate the line using bits and pixels, rather than to explore their innate productive value and aesthetic potential.

Referring to variations of the architectural drawing from a domestic typology, the paper uses high-precision digital tools tailored to quantitative image analysis and digital tools that sit outside the remit of architectural production, such as word processing, to present a new range of drawing techniques. By applying a series of traditional analytical procedures to the image, it reveals how these maneuvers can interrogate and dislocate any predetermined formal normalization.

The paper reveals that the interdisciplinary repurposing of precise digital toolsets therefore has explicit disciplinary consequences. These arise as a direct result of the recalibration of scale, the liberation of the bit’s representational capacity, and the pixel’s properties of color and brightness. It concludes by proposing that deliberate instances of translational imprecision are highly productive, because by liberating the fundamental qualitative properties of the fundamental digital units, these techniques shift the disciplinary agency of the architectural drawing

keywords full paper, imprecision, representation, recalibration, theory, glitch aesthetics, algorithmic design, process
series ACADIA
type paper
email matthew.austin@uts.edu.au
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_984290 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002