CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 588

_id acadia20_574
id acadia20_574
authors Nguyen, John; Peters, Brady
year 2020
title Computational Fluid Dynamics in Building Design Practice
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 574-583.
doi https://doi.org/10.52842/conf.acadia.2020.1.574
summary This paper provides a state-of-the-art of computational fluid dynamics (CFD) in the building industry. Two methods were used to find this new knowledge: a series of interviews with leading architecture, engineering, and software professionals; and a series of tests in which CFD software was evaluated using comparable criteria. The paper reports findings in technology, workflows, projects, current unmet needs, and future directions. In buildings, airflow is fundamental for heating and cooling, as well as occupant comfort and productivity. Despite its importance, the design of airflow systems is outside the realm of much of architectural design practice; but with advances in digital tools, it is now possible for architects to integrate air flow into their building design workflows (Peters and Peters 2018). As Chen (2009) states, “In order to regulate the indoor air parameters, it is essential to have suitable tools to predict ventilation performance in buildings.” By enabling scientific data to be conveyed in a visual process that provides useful analytical information to designers (Hartog and Koutamanis 2000), computer performance simulations have opened up new territories for design “by introducing environments in which we can manipulate and observe” (Kaijima et al. 2013). Beyond comfort and productivity, in recent months it has emerged that air flow may also be a matter of life and death. With the current global pandemic of SARS-CoV-2, it is indoor environments where infections most often happen (Qian et al. 2020). To design architecture in a post-COVID-19 environment will require an in-depth understanding of how air flows through space.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia18_216
id acadia18_216
authors Ahrens, Chandler; Chamberlain, Roger; Mitchell, Scott; Barnstorff, Adam
year 2018
title Catoptric Surface
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 216-225
doi https://doi.org/10.52842/conf.acadia.2018.216
summary The Catoptric Surface research project explores methods of reflecting daylight through a building envelope to form an image-based pattern of light on the interior environment. This research investigates the generation of atmospheric effects from daylighting projected onto architectural surfaces within a built environment in an attempt to amplify or reduce spatial perception. The mapping of variable organizations of light onto existing or new surfaces creates a condition where the perception of space does not rely on form alone. This condition creates a visual effect of a formless atmosphere and affects the way people use the space. Often the desired quantity and quality of daylight varies due to factors such as physiological differences due to age or the types of tasks people perform (Lechner 2009). Yet the dominant mode of thought toward the use of daylighting tends to promote a homogeneous environment, in that the resulting lighting level is the same throughout a space. This research project questions the desire for uniform lighting levels in favor of variegated and heterogeneous conditions. The main objective of this research is the production of a unique facade system that is capable of dynamically redirecting daylight to key locations deep within a building. Mirrors in a vertical array are individually adjusted via stepper motors in order to reflect more or less intense daylight into the interior space according to sun position and an image-based map. The image-based approach provides a way to specifically target lighting conditions, atmospheric effects, and the perception of space.
keywords full paper, non-production robotics, representation + perception, performance + simulation, building technologies
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id ecaade2018_232
id ecaade2018_232
authors Al Bondakji, Louna, Chatzi, Anna-Maria, Heidari Tabar, Minoo, Wesseler, Lisa-Marie and Werner, Liss C.
year 2018
title VR-visualization of High-dimensional Urban Data
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 773-780
doi https://doi.org/10.52842/conf.ecaade.2018.2.773
summary The project aims to investigate the possibility of VR in a combination of visualizing high-dimensional urban data. Our study proposes a data-based tool for urban planners, architects, and researchers to 3D visualize and experience an urban quarter. Users have a possibility to choose a specific part of a city according to urban data input like "buildings, streets, and landscapes". This data-based tool is based on an algorithm to translate data from Shapefiles (.sh) in a form of a virtual cube model. The tool can be scaled and hence applied globally. The goal of the study is to improve understanding of the connection and analysis of high-dimensional urban data beyond a two-dimensional static graph or three-dimensional image. Professionals may find an optimized condition between urban data through abstract simulation. By implementing this tool in the early design process, researchers have an opportunity to develop a new vision for extending and optimizing urban materials.
keywords Abstract Urban Data Visualization; Virtual Reality; Geographical Information System
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_162
id ecaade2018_162
authors Alkadri, Miktha, Turrin, Michela and Sariyildiz, Sevil
year 2018
title Toward an Environmental Database - Exploring the material properties from the point cloud data of the existing environment
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 263-270
doi https://doi.org/10.52842/conf.ecaade.2018.2.263
summary The utilization of point cloud as a 3D laser scanning product has reached across multi-disciplines in terms of data processing, data visualization, and data analysis. This study particularly investigates further the use of typical attributes of raw point cloud data consisting of XYZ (position information), RGB (colour information) and I (intensity information). By exploring the optical and thermal properties of the given point cloud data, it aims at compensating the material and texture information that is usually remained behind by architects during the conceptual design stage. Calculation of the albedo, emissivity and the reflectance values from the existing context specifically direct the architects to predict the type of materials for the proposed design in order to keep the balance of the surrounding Urban Heat Island (UHI) effect. Therefore, architects can have a comprehensive analysis of the existing context to deal with the microclimate condition before a design decision phase.
keywords point cloud data; material characteristics; albedo; emissivity; reflectance value
series eCAADe
email
last changed 2022/06/07 07:54

_id ijac201816203
id ijac201816203
authors Anderson, Carl; Carlo Bailey, Andrew Heumann and Daniel Davis
year 2018
title Augmented space planning: Using procedural generation to automate desk layouts
source International Journal of Architectural Computing vol. 16 - no. 2, 164-177
summary We developed a suite of procedural algorithms for space planning in commercial offices. These algorithms were benchmarked against 13,000 actual offices designed by human architects. The algorithm performed as well as an architect on 77% of offices, and achieved a higher capacity in an additional 6%, all while following a set of space standards. If the algorithm used the space standards the same way as an architect (a more relaxed interpretation), the algorithm achieved a 97% match rate, which means that the algorithm completed this design task as well as a designer and in a shorter time. The benchmarking of a layout algorithm against thousands of existing designs is a novel contribution of this article, and we argue that it might be a first step toward a more comprehensive method to automate parts of the office layout process.
keywords Office design, design augmentation, space planning, automation, office layout, desk layouts
series journal
email
last changed 2019/08/07 14:03

_id ecaade2018_167
id ecaade2018_167
authors Anton, Ana and Abdelmahgoub, Ahmed
year 2018
title Ceramic Components - Computational Design for Bespoke Robotic 3D Printing on Curved Support
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 71-78
doi https://doi.org/10.52842/conf.ecaade.2018.2.071
summary Additive manufacturing enables the fabrication of affordable customisation of construction elements. This paper presents a computational design method developed for 3D printing of unique interlocking ceramic components, which assemble into segmented columns. The fabrication method is ceramic-paste extrusion, robotically placed on semi-cylindrical molds. Material system and fabrication setup contribute to the development of an integrated generative system which includes overall design, assembly logic and printing tool-path. By contextualizing clay extrusion and identifying challenges in bespoke tool-path generation, this paper discusses detailing opportunities in digital fabrication. Finally, it identifies future directions of research in extrusion-based printing.
keywords CAAD education; generative design; robotic 3D printing; clay extrusion; curved support
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia18_000
id acadia18_000
authors Anzalone, Phillip; Del Signore,Marcella; Wit, Andrew John (eds.)
year 2018
title ACADIA 2018: Re/Calibration: On Imprecision and Infidelity
source Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7, Mexico City, Mexico 18-20 October, 2018, 482 p.
doi https://doi.org/10.52842/conf.acadia.2018
summary Contained in this years paper proceedings are an unbiased mixed of the precise/imprecise and the computationally faithful/unfaithful. The juxtaposition of this seeming contradictory research and/or projects paints a picture of a broadening computational discourse at the intersection of art, science and technology. The presented research mediates physical, digital, virtual and mixed realities, bridges scales from the singular material compounds to the complex conglomerations associated with the urban environment, and all the while pushing against the limits of design both on Earth and beyond. This year’s conference calls into question how we within the disciplines of architecture and design as well as those outside view the role of computation, production and advanced technologies such as robotics and artificial intelligence within architecture, design and the built environment.
series ACADIA
last changed 2022/06/07 07:49

_id acadia18_312
id acadia18_312
authors Ariza, Inés; Mirjan, Ammar; Gandia, Augusto; Casas, Gonzalo; Cros, Samuel; Gramazio, Fabio; Kohler, Matthias.
year 2018
title In Place Detailing. Combining 3D printing and robotic assembly
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 312-321
doi https://doi.org/10.52842/conf.acadia.2018.312
summary This research presents a novel construction method that links robotic assembly and in place 3D printing. Rather than producing custom joints in a separate prefabrication process, our approach enables creating highly customized connection details that are 3D printed directly onto off-the-shelf building members during their assembly process. Challenging the current fashion of highly predetermined joints in digital construction, detailing in place offers an adaptive fabrication method, enabling the expressive tailoring of connection details addressing its specific architectural conditions. In the present research, the in place detailing strategy is explored through robotic wire arc additive manufacturing (WAAM), a metal 3D printing technique based on MIG welding. The robotic WAAM process coupled with localization and path-planning strategies allows a local control of the detail geometry enabling the fabrication of customized welded connections that can compensate material and construction tolerances. The paper outlines the potential of 3D printing in place details, describes methods and techniques to realize them and shows experimental results that validate the approach.
keywords work in progress, fabrication & robotics, robotic production, materials/adaptive systems, architectural detailing
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id acadia18_36
id acadia18_36
authors Austin, Matthew; Matthews, Linda
year 2018
title Drawing Imprecision. The digital drawing as bits and pixels
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 36-45
doi https://doi.org/10.52842/conf.acadia.2018.036
summary This paper explores the consequences of digitizing the architectural drawing. It argues that the fundamental unit of drawing has shifted from “the line” to an interactive partnership between bits and pixels. It also reveals how the developmental focus of imaging technology has been to synthesize and imitate the line using bits and pixels, rather than to explore their innate productive value and aesthetic potential.

Referring to variations of the architectural drawing from a domestic typology, the paper uses high-precision digital tools tailored to quantitative image analysis and digital tools that sit outside the remit of architectural production, such as word processing, to present a new range of drawing techniques. By applying a series of traditional analytical procedures to the image, it reveals how these maneuvers can interrogate and dislocate any predetermined formal normalization.

The paper reveals that the interdisciplinary repurposing of precise digital toolsets therefore has explicit disciplinary consequences. These arise as a direct result of the recalibration of scale, the liberation of the bit’s representational capacity, and the pixel’s properties of color and brightness. It concludes by proposing that deliberate instances of translational imprecision are highly productive, because by liberating the fundamental qualitative properties of the fundamental digital units, these techniques shift the disciplinary agency of the architectural drawing

keywords full paper, imprecision, representation, recalibration, theory, glitch aesthetics, algorithmic design, process
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id ecaade2018_424
id ecaade2018_424
authors Barczik, Günter
year 2018
title From Body Movement to Sculpture to Space - Employing Immersive Technologies to Design with the whole Body
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 781-788
doi https://doi.org/10.52842/conf.ecaade.2018.2.781
summary We present and discuss an experimental student design and research project that investigates how architectural design can be enhanced via immersive technologies. Specifically, by employing not a 2D interface for designers' thoughts, but a 3D interface and thereby activating the whole body instead of merely head and hands.
keywords Virtual Reality; Design Tools; Design Concepts; Design Methods
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia18_366
id acadia18_366
authors Baseta, Efilena; Bollinger, Klaus
year 2018
title Construction System for Reversible Self-Formation of Grid Shells. Correspondence between physical and digital form
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 366-375
doi https://doi.org/10.52842/conf.acadia.2018.366
summary This paper presents a construction system which offers an efficient materialization method for double-curved gridshells. This results in an active-bending system of controlled deflections. The latter system embeds its construction manual into the geometry of its components. Thus it can be used as a self-formation process. The two presented gridshell structures are composed of geometry-induced, variable stiffness elements. The latter elements are able to form programmed shapes passively when gravitational loads are applied. Each element consists of two layers and a slip zone between them. The slip allows the element to be flexible when it is straight and increasingly stiffer while its curvature increases. The amplitude of the slip defines the final deformation of the element. As a result, non-uniform deformations can be obtained with uniform cross sections and loads. When the latter elements are used in grid configurations, self-formation of initially planar surfaces emerges. The presented system eliminates the need for electromechanical equipment since it relies on material properties and hierarchical geometrical configurations. Wood, as a flexible and strong material, has been used for the construction of the prototypes. The fabrication of the timber laths has been done via CNC industrial milling processes. The comparison between the initial digital design and the resulting geometry of the physical prototypes is reviewed in this paper. The aim is to inform the design and fabrication process with performance data extracted from the prototypes. Finally, the scalability of the system shows its potential for large-scale applications, such as transformable structures.
keywords full paper, material & adaptive systems, flexible structures, digital fabrication, self-formation
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id ecaade2018_377
id ecaade2018_377
authors Beaudry Marchand, Emmanuel, Dorta, Tomás and Pierini, Davide
year 2018
title Influence of Immersive Contextual Environments on Collaborative Ideation Cognition - Through design conversations, gestures and sketches
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 795-804
doi https://doi.org/10.52842/conf.ecaade.2018.2.795
summary In the design studio, Virtual Reality (VR) has mainly been included as a visualization tool to explore pre-designed ideas developed in traditional 3D software or using pen on paper. Meanwhile, a reshaping of the design process has been taking place, bringing forward interaction/experiential concerns and co-design approaches throughout disciplines in a push for a more thorough consideration of projects' contexts. This paper reports an exploratory study of how immersive contextual representations influence the co-ideation process. Audio-video recordings of co-ideation sessions (9) from a pedagogical studio were analyzed through verbal and representational (sketches and design gestures) exchanges as occurring in three different conditions: (a) pen on paper, immersive headset-free VR (b) without, and (c) with the use of contextual immersive environment (photogrammetric scans and 3D models). Results show that, although design conversations were similar across all conditions, design gestures were more often directly related to- than independent from the graphical representation only when using an immersive contextual environment. Furthermore, the rate of sketching episodes in general and sketching explanations were considerably lower in this condition. This could imply that use of pre-made context greatly reduces the need of sketching elements to support a clearer co-ideation.
keywords Immersive context; Design gestures; Design conversations; Sketches; Co-design studio; Design cognition
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_405
id ecaade2018_405
authors Belém, Catarina and Leit?o, António
year 2018
title From Design to Optimized Design - An algorithmic-based approach
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 549-558
doi https://doi.org/10.52842/conf.ecaade.2018.2.549
summary Stringent requirements of efficiency and sustainability lead to the demand for buildings that have good performance regarding different criteria, such as cost, lighting, thermal, and structural, among others. Optimization can be used to ensure that such requirements are met. In order to optimize a design, it is necessary to generate different variations of the design, and to evaluate each variation regarding the intended criteria. Currently available design and evaluation tools often demand manual and time-consuming interventions, thus limiting design variations, and causing architects to completely avoid optimization or to postpone it to later stages of the design, when its benefits are diminished. To address these limitations, we propose Algorithmic Optimization, an algorithmic-based approach that combines an algorithmic description of building designs with automated simulation processes and with optimization processes. We test our approach on a daylighting optimization case study and we benchmark different optimization methods. Our results show that the proposed workflow allows to exclude manual interventions from the optimization process, thus enabling its automation. Moreover, the proposed workflow is able to support the architect in the choice of the optimization method, as it enables him to easily switch between different optimization methods.
keywords Algorithmic Design; Algorithmic Analysis; Algorithmic Optimization; Lighting optimization; Black-Box optimization
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2018_342
id caadria2018_342
authors Bhagat, Nikita, Rybkowski, Zofia, Kalantar, Negar, Dixit, Manish, Bryant, John and Mansoori, Maryam
year 2018
title Modulating Natural Ventilation to Enhance Resilience Through Modifying Nozzle Profiles - Exploring Rapid Prototyping Through 3D-Printing
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 185-194
doi https://doi.org/10.52842/conf.caadria.2018.2.185
summary The study aimed to develop and test an environmentally friendly, easily deployable, and affordable solution for socio-economically challenged populations of the world. 3D-printing (additive manufacturing) was used as a rapid prototyping tool to develop and test a façade system that would modulate air velocity through modifying nozzle profiles to utilize natural cross ventilation techniques in order to improve human comfort in buildings. Constrained by seasonal weather and interior partitions which block the ability to cross ventilate, buildings can be equipped to perform at reduced energy loads and improved internal human comfort by using a façade system composed of retractable nozzles developed through this empirical research. This paper outlines the various stages of development and results obtained from physically testing different profiles of nozzle-forms that would populate the façade system. In addition to optimizing nozzle profiles, the team investigated the potential of collapsible tube systems to permit precise placement of natural ventilation directed at occupants of the built space.
keywords Natural ventilation; Wind velocity; Rapid prototyping; 3D-printing; Nozzle profiles
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia18_176
id acadia18_176
authors Bidgoli, Ardavan; Veloso,Pedro
year 2018
title DeepCloud. The Application of a Data-driven, Generative Model in Design
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 176-185
doi https://doi.org/10.52842/conf.acadia.2018.176
summary Generative systems have a significant potential to synthesize innovative design alternatives. Still, most of the common systems that have been adopted in design require the designer to explicitly define the specifications of the procedures and in some cases the design space. In contrast, a generative system could potentially learn both aspects through processing a database of existing solutions without the supervision of the designer. To explore this possibility, we review recent advancements of generative models in machine learning and current applications of learning techniques in design. Then, we describe the development of a data-driven generative system titled DeepCloud. It combines an autoencoder architecture for point clouds with a web-based interface and analog input devices to provide an intuitive experience for data-driven generation of design alternatives. We delineate the implementation of two prototypes of DeepCloud, their contributions, and potentials for generative design.
keywords full paper, design tools software computing + gaming, ai & machine learning, generative design, autoencoders
series ACADIA
type paper
email
last changed 2022/06/07 07:52

_id ecaade2018_386
id ecaade2018_386
authors Brandao, Filipe, Paio, Alexandra and Antunes, Nuno
year 2018
title Towards a Digitally Fabricated Disassemble-able Building System - A CNC fabricated T-Slot Joint
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 11-20
doi https://doi.org/10.52842/conf.ecaade.2018.2.011
summary Growing dissemination of digital fabrication technologies coupled with a renewed interest in wood as a construction material have led to a resurgence of research into integral wood joints. Recent research on digitally fabricated wood joints has focused primarily on robotic or on CNC router produced snap-fit or tab-and-slot joints. These types of joints have several problems in sheathing to structure connections. The present paper reports on research into design and fabrication of T-slot joints that allow hidden back-face connections which are disassemble-able. It is part of an ongoing research whose aim is to develop disassemble-able and mass customizable construction system of partition walls for building renovation.
keywords Wood Joints; Digital Fabrication; Wood; Design for Disassembly
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2018_1671
id sigradi2018_1671
authors Brito, Michele; de Sá, Ana Isabel; Borges, Jéssica; Rena, Natacha
year 2018
title IndAtlas - Technopolitic platform for urban investigation
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1305-1312
summary This article presents the project of the urban research platform IndAtlas, currently in early development stage by UFMG’s Research Group Indisciplinar. Through the association of crowdsourcing tools, a spatial database and the production of visualizations of different types, it is intended to create a Web platform for collecting, analyzing and depicting information about processes of production and transformation of urban space. It is proposed that the phenomena (themes) investigated in the platform are approached mainly from four axes: 1) spatial / territorial; 2) temporal; 3) social; 4) communicational. To do this, we try to combine online collaborative maps with the production of dynamic timelines and visualizations of networks of social actors (graphs), connected with social networks and Wiki pages. The article will address the development of Indisciplinar’s working method, which guided the proposal of the platform, as well as the functional and technical aspects to be observed for its implementation, the proposed architecture and the importance of interoperability for the project. Finally, the inquiries derived from the first test experiment of an IndAtlas test prototype will be presented. The experiment took place in a workshop belonging to the Cidade Eletrônika 2018 Festival – an arts and technology event. The workshop was offered in January of the same year, and it proposed a collaborative cartography of the Santa Tereza neighborhood, in Belo Horizonte / MG – a traditional neighborhood of great importance for historical heritage, currently subject to great real estate pressure and the focus of a series of territorial disputes.
keywords IndAtlas, Crowdsourcing, Urban Technopolitics,, Digital Cartographies,, Spatial Data.
series SIGRADI
email
last changed 2021/03/28 19:58

_id lasg_whitepapers_2019_063
id lasg_whitepapers_2019_063
authors Börner, Katy; and Andreas Bueckle
year 2019
title Envisioning Intelligent Interactive Systems; Data Visualizations for Sentient Architecture
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.063 - 088
summary This paper presents data visualizations of an intelligent environment that were designed to serve the needs of two stakeholder groups: visitors wanting to understand how that environment operates, and developers interested in optimizing it. The visualizations presented here were designed for [Amatria], a sentient sculpture built by the Living Architecture Systems Group (LASG) at Indiana University Bloomington, IN, USA, in the spring of 2018. They are the result of an extended collaboration between LASG and the Cyberinfrastructure for Network Science Center (CNS) at Indiana University. We introduce [Amatria], review related work on the visualization of smart environments and sentient architectures, and explain how the Data Visualization Literacy Framework (DVL-FW) can be used to develop visualizations of intelligent interactive systems (IIS) for these two stakeholder groups.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id acadia23_v3_157
id acadia23_v3_157
authors C Niquille, Simone
year 2023
title Model Home
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary Well, hello. Thanks for having me. Hopefully, not everyone is too exhausted. But we'll get through it. So, you know, in some ways I feel like a guest, an intruder -- there's different words -- to a conference such as this. I am trained as a graphic designer and a photographer. But somehow, you know, I find myself between disciplines. And one of them is architecture. What we will talk about today is a project that started around 2018 called ""Model Home"", which is sort of the larger chapter. Most of the work I do is either in writing essays, as well as film. There's not enough time to show the film today, but if you are interested, just come and ask me after.
series ACADIA
type keynote
email
last changed 2024/04/17 13:59

_id ecaade2018_164
id ecaade2018_164
authors Chang, Mei-Chih, Buš, Peter, Tartar, Ayça, Chirkin, Artem and Schmitt, Gerhard
year 2018
title Big-Data Informed Citizen Participatory Urban Identity Design
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 669-678
doi https://doi.org/10.52842/conf.ecaade.2018.2.669
summary The identity of an urban environment is important because it contributes to self-identity, a sense of community, and a sense of place. However, under present-day conditions, the identities of expanding cities are rapidly deteriorating and vanishing, especially in the case of Asian cities. Therefore, cities need to build their urban identity, which includes the past and points to the future. At the same time, cities need to add new features to improve their livability, sustainability, and resilience. In this paper, using data mining technologies for various types of geo-referenced big data and combine them with the space syntax analysis for observing and learning about the socioeconomic behavior and the quality of space. The observed and learned features are identified as the urban identity. The numeric features obtained from data mining are transformed into catalogued levels for designers to understand, which will allow them to propose proper designs that will complement or improve the local traditional features. A workshop in Taiwan, which focuses on a traditional area, demonstrates the result of the proposed methodology and how to transform a traditional area into a livable area. At the same time, we introduce a website platform, Quick Urban Analysis Kit (qua-kit), as a tool for citizens to participate in designs. After the workshop, citizens can view, comment, and vote on different design proposals to provide city authorities and stakeholders with their ideas in a more convenient and responsive way. Therefore, the citizens may deliver their opinions, knowledge, and suggestions for improvements to the investigated neighborhood from their own design perspective.
keywords Urban identity; unsupervised machine learning; Principal Component Analysis (PCA); citizen participated design; space syntax
series eCAADe
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_955898 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002