CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 624

_id caadria2018_180
id caadria2018_180
authors Mekawy, Mohammed and Petzold, Frank
year 2018
title BIM-Based Model Checking in the Early Design Phases of Precast Concrete Structures
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 71-80
doi https://doi.org/10.52842/conf.caadria.2018.2.071
summary Designers often carry out their work in the early design stages with disregard to prefabrication requirements, leading to poorly thought out design decisions in terms of precast concrete planning efficiency. If precast expertise could be integrated early into design schemes, this would improve design efficiency, reduce errors and misalignments, and save time at every design iteration. The objective is not to replace precast domain experts, but to help architects make better-informed design decisions. This research is part of a wider investigation that aims to develop a rule-based expert system to support an automated review of precast concrete requirements in BIM models in the early design stages, proactively providing feedback for design decision support. This specific paper summarizes the theoretical part of the research and proposes a way to formalize precast expert knowledge as rule-sets in a tabular form that can be later programmed and integrated in a BIM platform for automated checking of BIM models.
keywords Precast Concrete; Rule-based checking; BIM-based model checking; Expert system; Decision tables
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2018_297
id caadria2018_297
authors Kim, Eonyong
year 2018
title Field Survey System for Facility Management Using BIM Model - IoT Management for Facility Management
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 535-544
doi https://doi.org/10.52842/conf.caadria.2018.2.535
summary Combining IoT technology with the BIM paradigm can enhance the data collection that BIM strives for by enabling real-time monitoring of building conditions. This data collection can be used very effectively for managing facilities. However, many IoT devices must be installed in buildings to achieve such results and therefore, a management system is required. The purpose of this study is to suggest an IoT management system that uses the drawing information extracted from a BIM model to allow effective management from initial installation of IoT devices to maintenance. In the pursuit of this purpose, a converter and an IoT device which developed in the research is used. The converter extracts space information and 2D floor drawing from BIM model and the IoT device is developed based on ESP 8266 chip which consist of one computer and WIFI module. To store the data which collected by the IoT devices, IoT service of AWS(Amazon Web Service) is used.
keywords Facility Management; IoT; Management System; BIM
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2018_385
id ecaade2018_385
authors Schulz, Daniel, Reiter, Felix, Metche, Alexander and Werner, Liss C.
year 2018
title Data Flow - a GIS based interactive planning tool for educational facilities
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 497-506
doi https://doi.org/10.52842/conf.ecaade.2018.1.497
summary This paper describes the development of a Grasshopper-based planning support tool for urban planning. The tool aims at the analysis of demand in educational facilities and the optimization of their location and capacities. It was developed for the use case of Berlin using only publicly available resources and data sets. Through preprocessed GIS- and statistical data plus an easy-access interface, the tool encourages people from different backgrounds and even those with no professional knowledge in planning, to engage in urban decision making. Although being initially aimed at contributing to a moderated participation process, the tool's simple GUI (graphical user interface) and open source backend, make it usable in any setup - without a briefed advisor or the need for later professional evaluation by another party.
keywords urban planning; data visualization; gamification; education; GIS
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2020_445
id ecaade2020_445
authors Spiegelhalter, Thomas, Andia, Alfredo, Levente, Juhasz and Namuduri, Srikanth
year 2020
title Part 1: The Integrated Decision Support System - Generative and synthetic biological design imaginations for the Miami bay area
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 11-20
doi https://doi.org/10.52842/conf.ecaade.2020.2.011
summary In less than 150 years our carbon society transformed the planet. Today more than 50% of ecologies in the world are determined by unsustainable industrialization processes. The latest IPCC reports show that we are quickly arriving at points of no return in the warming of our planet. We cannot afford to continue in the same direction, we need a new imagination. As part of an E.U.-US funded $1.9 million research project we have been working on multiple projects for the future of the Miami islands since 2018:1. We developed a generative GIS-BIM based Python API for mapping and optimization of carbon-neutral design workflows. It includes genetic design combinatorics with intuitive graphical Dynamo-Python-Grasshopper programming with experimental design results. 2. We worked on a series of design research for the Miami Bay that envisions islands, living shorelines, programmable soils, and infrastructures that grow by themselves using synthetic biology.
keywords Automated Workflows, Synthetic Biology, Artificial Intelligence, Architecture, Sea-level Rise
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_135
id ecaade2018_135
authors Briscoe, Danelle
year 2018
title Living Wall - Information Workflow and Collaboration
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 207-212
doi https://doi.org/10.52842/conf.ecaade.2018.1.207
summary Beyond the benefits of standard documentation agreeance and project management coordination, many architects and other design professionals express concern over the limitation of Building Information Modelling (BIM) process may have on the design process, or better yet social responsibility or ecological benefit. For Living Wall facade exploration, this research suggests BIM is arguably an effective tool to support innovation in the design process, as well as promote collaboration between ecology and architecture disciplines. Ecological measures and data collection evidence further validates BIM procedural clarity and recognizes building façade exploration both technologically and environmentally.
keywords Living Wall; BIM; data collection
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2018_1702
id sigradi2018_1702
authors Câmara Benevides, Caroline; Ribeiro Roquete, Suellen; Mourão Moura, Ana Clara; Romero Fonseca Motta, Silvio
year 2018
title Comparative Analysis of Geospatial Visualization Tools for Urban Zoning Planning
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 609-616
summary The collective management of urban environment is a challenging task. Although considering the individuals and their values helps to build environments that are closer to the user's expectations, the identification of these aspects is not an easy task. Considering the potential of exploring visualization tools to support public participation, this paper compares two different 3D tools based on parametric modeling. Reinforcing the relevancy of both methods in promoting the visualization through the process of regulating the urban landscape resulting from the urban parameters, this paper aims to evaluate their performances concerning time consumed, training requirements, results and applicability.
keywords 3D Modeling; Parametric Modeling; CityEngine; Grashopper3D; Visualization
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_156
id ecaade2018_156
authors Kovacs, Adam Tamas and Micsik, András
year 2018
title Building Information Dashboard as Decision Support during Design Phase
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 281-288
doi https://doi.org/10.52842/conf.ecaade.2018.1.281
summary This paper discusses the Building Information Dashboard, a data representation method which provides a solid basis for decision-makers to make optimal decisions during the design phase of an Architecture, Engineering, and Construction project. We describe an example project workflow where the dashboard is integrated. We sum up the evaluation method, which is the basis of the dashboard, and we research what type of visualization method is best suited to representing this type of data. To this end, an evaluation matrix was created to compare the alternative charts. We take into account what kind of information such a dashboard should represent and what kind of features it should have. We suggest layouts for different use cases - both for professional and non-professional decision-makers, as well as for discipline designers.
keywords BIM; dashboard; decision support; data visualization; data analytics
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2018_375
id ecaade2018_375
authors Pienaru, Meram-Irina
year 2018
title The City as a Playground - Game tools for interactive planning
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 679-686
doi https://doi.org/10.52842/conf.ecaade.2018.2.679
summary The emergence of a data space (Big Data and IoT) and, with it, the proliferation of communication means, led many scholars to describe the city through a series of concepts like the informational city, the intelligent city or the cybercity, all of them being characterized by a strong networked consciousness (Castells, Graham, Boyer). The hypothesis of this paper is that game methodology is now gaining momentum and can act as enabler of smarter communities by an increasing access to data infrastructures. This is why the city can be seen as a series of connected playgrounds where interactive tools can support citizen engagement and decision making processes. It does so by going through relevant theoretical background on gamification in the urban context and best practices, to finally describe two student projects developed at CHORA Conscious City, TU Berlin. The two projects are experimental and explore the capabilities of interactive tools in order to support planning processes.
keywords Gamification; Interactive tools; Networked consciousness; Intelligent communities
series eCAADe
email
last changed 2022/06/07 08:00

_id ecaade2018_162
id ecaade2018_162
authors Alkadri, Miktha, Turrin, Michela and Sariyildiz, Sevil
year 2018
title Toward an Environmental Database - Exploring the material properties from the point cloud data of the existing environment
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 263-270
doi https://doi.org/10.52842/conf.ecaade.2018.2.263
summary The utilization of point cloud as a 3D laser scanning product has reached across multi-disciplines in terms of data processing, data visualization, and data analysis. This study particularly investigates further the use of typical attributes of raw point cloud data consisting of XYZ (position information), RGB (colour information) and I (intensity information). By exploring the optical and thermal properties of the given point cloud data, it aims at compensating the material and texture information that is usually remained behind by architects during the conceptual design stage. Calculation of the albedo, emissivity and the reflectance values from the existing context specifically direct the architects to predict the type of materials for the proposed design in order to keep the balance of the surrounding Urban Heat Island (UHI) effect. Therefore, architects can have a comprehensive analysis of the existing context to deal with the microclimate condition before a design decision phase.
keywords point cloud data; material characteristics; albedo; emissivity; reflectance value
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_377
id ecaade2018_377
authors Beaudry Marchand, Emmanuel, Dorta, Tomás and Pierini, Davide
year 2018
title Influence of Immersive Contextual Environments on Collaborative Ideation Cognition - Through design conversations, gestures and sketches
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 795-804
doi https://doi.org/10.52842/conf.ecaade.2018.2.795
summary In the design studio, Virtual Reality (VR) has mainly been included as a visualization tool to explore pre-designed ideas developed in traditional 3D software or using pen on paper. Meanwhile, a reshaping of the design process has been taking place, bringing forward interaction/experiential concerns and co-design approaches throughout disciplines in a push for a more thorough consideration of projects' contexts. This paper reports an exploratory study of how immersive contextual representations influence the co-ideation process. Audio-video recordings of co-ideation sessions (9) from a pedagogical studio were analyzed through verbal and representational (sketches and design gestures) exchanges as occurring in three different conditions: (a) pen on paper, immersive headset-free VR (b) without, and (c) with the use of contextual immersive environment (photogrammetric scans and 3D models). Results show that, although design conversations were similar across all conditions, design gestures were more often directly related to- than independent from the graphical representation only when using an immersive contextual environment. Furthermore, the rate of sketching episodes in general and sketching explanations were considerably lower in this condition. This could imply that use of pre-made context greatly reduces the need of sketching elements to support a clearer co-ideation.
keywords Immersive context; Design gestures; Design conversations; Sketches; Co-design studio; Design cognition
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_405
id ecaade2018_405
authors Belém, Catarina and Leit?o, António
year 2018
title From Design to Optimized Design - An algorithmic-based approach
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 549-558
doi https://doi.org/10.52842/conf.ecaade.2018.2.549
summary Stringent requirements of efficiency and sustainability lead to the demand for buildings that have good performance regarding different criteria, such as cost, lighting, thermal, and structural, among others. Optimization can be used to ensure that such requirements are met. In order to optimize a design, it is necessary to generate different variations of the design, and to evaluate each variation regarding the intended criteria. Currently available design and evaluation tools often demand manual and time-consuming interventions, thus limiting design variations, and causing architects to completely avoid optimization or to postpone it to later stages of the design, when its benefits are diminished. To address these limitations, we propose Algorithmic Optimization, an algorithmic-based approach that combines an algorithmic description of building designs with automated simulation processes and with optimization processes. We test our approach on a daylighting optimization case study and we benchmark different optimization methods. Our results show that the proposed workflow allows to exclude manual interventions from the optimization process, thus enabling its automation. Moreover, the proposed workflow is able to support the architect in the choice of the optimization method, as it enables him to easily switch between different optimization methods.
keywords Algorithmic Design; Algorithmic Analysis; Algorithmic Optimization; Lighting optimization; Black-Box optimization
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2018_245
id caadria2018_245
authors Chowdhury, Shuva and Schnabel, Marc Aurel
year 2018
title An Algorithmic Methodology to Predict Urban Form - An Instrument for Urban Design
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 401-410
doi https://doi.org/10.52842/conf.caadria.2018.2.401
summary We question the recent practices of conventional and participatory urban design approaches and offer a middle approach by exploring computational design tools in the design system. On the one hand, the top-down urban planning approaches investigate urban form as a holistic matter which only can be calibrated by urban professionals. These approaches are not able to offer enough information to the end users to predict the urban form. On the other hand, the bottom-up urban design approaches cannot visualise predicted urban scenarios, and most often the design decisions stay as general assumptions. We developed and tested a parametric design platform combines both approaches where all the stakeholders can participate and visualise multiple urban scenarios in real-time feedback. Parametric design along with CIM modelling system has influenced urban designers for a new endeavour in urban design. This paper presents a methodology to generate and visualise urban form. We present a novel decision-making platform that combines city level and local neighbourhood data to aid participatory urban design decisions. The platform allows for stakeholder collaboration and engagement in complex urban design processes.
keywords knowledge-based system; algorithmic methodology ; design decision tool; urban form;
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2018_1302
id sigradi2018_1302
authors Côco Júnior, Verley Henry; Celani, Gabriela
year 2018
title From the automated generation of layouts to fabrication with the use of BIM: a new agenda for Architecture in the 21st century
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 23-30
summary Scripting, BIM and Digital Fabrication are already recognized as important skills in education and practice in Architecture in the 21st century. However, they are not always applied together to generate innovative results for the industry. This paper starts from the observation of the difficulty that prefabricated bathroom factories have in meeting a demand for mass customization and proposes a workflow that goes from the generation of layouts to modeling in BIM and the automated production of documents for manufacturing. The preliminary results demonstrate the possibility of changing the mass production culture of an industry, by means of applying the proposed workflow.
keywords Building Information Modeling; Process algorithm; Automation; Modular bathrooms; Prefabrication
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_438
id ecaade2018_438
authors Das, Subhajit
year 2018
title Interactive Artificial Life Based Systems, Augmenting Design Generation and Evaluation by Embedding Expert Opinion - A Human Machine dialogue for form finding.
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 85-94
doi https://doi.org/10.52842/conf.ecaade.2018.1.085
summary Evolution of natural life and subsequently selection of life forms is an interesting topic that has been explored multiple times. This area of research and its application has high relevance in evolutionary design and automated design generation. Taking inspiration from Charles Darwin's theory, all biological species were formed by the process of evolution based on natural selection of the fittest (Darwin, n.d.) this paper explains exploratory research showcasing semi-automatic design generation. This is realized by an interactive artificial selection tool, where the designer or the end user makes key decisions steering the propagation and breeding of future design artifacts. This paper, describes two prototypes and their use cases, highlighting interaction based optimal design selection. One of the prototypes explains a 2d organic shape creator using a metaball shape approach, while the other discusses a spatial layout generation technique for conceptual design.
keywords design generation; implicit surfaces; artificial life; decision making; artificial selection; spatial layout generation
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2018_295
id ecaade2018_295
authors Dezen-Kempter, Eloisa, Cogima, Camila Kimi, Vieira de Paiva, Pedro Victor and Garcia de Carvalho, Marco Antonio
year 2018
title BIM for Heritage Documentation - An ontology-based approach
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 213-222
doi https://doi.org/10.52842/conf.ecaade.2018.1.213
summary In the recent decades, the high-resolution remote sensing, through 3D laser scanning and photogrammetry benefited historic buildings maintenance, conservation, and restoration works. However, the dense surface models (DSM) generated from the data capture have nonstructured features as lack of topology and semantic discretization. The process to create a semantically oriented 3D model from the DSM, using the of Building Information Model technology, is a possibility to integrate historical information about the life cycle of the building to maintain and improving architectural valued building stock to its functional level and safeguarding its outstanding historical value. Our approach relies on an ontology-based system to represent the knowledge related to the building. Our work outlines a model-driven approach based on the hybrid data acquisition, its post-processing, the identification of the building' main features for the parametric modeling, and the development of an ontological map integrated with the BIM model. The methodology proposed was applied to a large-scale industrial historical building, located in Brazil. The DSM were compared, providing a qualitative assessment of the proposed method.
keywords Reality-based Surveying; Ontology-based System; BIM; Built heritage management
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaaderis2018_119
id ecaaderis2018_119
authors Georgiou, Odysseas
year 2018
title The Oval - a complex geometry BIM case study
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 141-150
keywords This paper documents the steps followed to design and construct an oval shaped, high rise structure in Limassol Cyprus. The author presents the developed computational framework which was purposely built to support multiple levels and disciplines of design, construction and digital fabrication leading to a successful delivery of a complex geometry project within time and budget. A fully informed model involving multi-disciplinary data ranging from its conception to its completion establishes a sustainable paradigm for the construction industry, mainly because of its single source of control as opposed to other precedents involving multiple models and information.
series eCAADe
email
last changed 2018/05/29 14:33

_id ecaade2018_190
id ecaade2018_190
authors Gless, Henri-Jean, Halin, Gilles and Hanser, Damien
year 2018
title Need of a BIM-agile Coach to Oversee Architectural Design - From one pedagogical experiment to another
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 445-450
doi https://doi.org/10.52842/conf.ecaade.2018.1.445
summary This paper is part of our research on the digital transition in architecture, and more particularly on the integration of BIM (Building Information Management) technology. Indeed, in the field of AEC in France, this transition is still ongoing and remains difficult for architects. BIM technology changes the way people work and communicate, and remains only a tool without a method behind it. His arrival then raises technical but also human questions. Our research then turns to the social sciences and project management sciences to see if the creation or adaptation of project management methods can facilitate this integration. In other fields such as industry, software engineering, or HMI design, we have seen the emergence of agile methods that focus more on design teams, and therefore communication, than on the process itself. After experimenting with several agile practices, we identified the need for a design team to be mentored by someone in the role of facilitator or coach. This article describes how we can transfer to students an agile practice called BIM-agile Coach that we experimented during a weeklong workshop.
keywords Architectural design; Agile methods; Agile practices; BIM technology; Collaborative design; Project management
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2018_284
id ecaade2018_284
authors Hochscheid, Elodie and Halin, Gilles
year 2018
title BIM Implementation in Architecture Firms - Interviews, case studies and action research used to build a method that facilitates implementation of BIM processes and tools
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 231-240
doi https://doi.org/10.52842/conf.ecaade.2018.1.231
summary Building Information Modeling/Management (BIM) is an emerging technological and procedural shift within the AEC industry. In this paper, we describe how we used interviews, case studies and action research to collect information on how implementation of BIM is made in architecture firms. Hypotheses on what facilitates BIM implementation in these firms are drawn.
keywords BIM implementation; architecture firms; method; action research; interviews; case studies
series eCAADe
email
last changed 2022/06/07 07:50

_id acadia18_46
id acadia18_46
authors Marcus, Adam; Kudless, Andrew
year 2018
title Drawing Codes. Experimental protocols of architectural representation
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 46-55
doi https://doi.org/10.52842/conf.acadia.2018.046
summary Emerging technologies of design and production have largely changed the role of drawings within the contemporary design process from that of design generators to design products. As architectural design has shifted from an analog drawing-based paradigm to that of a computational model-based paradigm, the agency of the drawing as a critical and important form of design representation has greatly diminished. As our design tools have increasingly become computational and the production of our drawings have become predominantly automated, this paper examines the effects on the architectural discipline and attempts to catalog examples of how artists, designers, architects, and programmers have used rule-based techniques in the process of drawing as a critical act in their process. Furthermore, the paper presents the Drawing Codes project, an ongoing research and exhibition platform that critically investigates the intersection of code and drawing: how rules and constraints inform the ways architects document, analyze, represent, and design the built environment. The project features commissioned drawings by a range of contemporary architects and designers as a means of gathering a diverse set of perspectives on how computational techniques, but more importantly, computational thinking, can reexamine the role of architectural drawing as a creative and critical act.
keywords full paper, design theory & history, representation + perception, procedural design, art and technology
series ACADIA
type paper
email
last changed 2022/06/07 07:59

_id caadria2018_057
id caadria2018_057
authors Nandavar, Anirudh, Petzold, Frank, Nassif, Jimmy and Schubert, Gerhard
year 2018
title Interactive Virtual Reality Tool for BIM Based on IFC - Development of OpenBIM and Game Engine Based Layout Planning Tool - A Novel Concept to Integrate BIM and VR with Bi-Directional Data Exchange
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 453-462
doi https://doi.org/10.52842/conf.caadria.2018.1.453
summary With recent advancements in VR (Virtual Reality) technology in the past year, it has emerged as a new paradigm in visualization and immersive HMI (Human-machine Interface). On the other hand, in the past decades, BIM (Building Information Modelling) has emerged as the new standard of implementing construction projects and is quickly becoming a norm than just a co-ordination tool in the AEC industry.Visualization of the digital data in BIM plays an important role as it is the primary communication medium to the project participants, where VR can offer a new dimension of experiencing BIM and improving the collaboration of various stakeholders of a project. There are both open source and commercial solutions to extend visualization of a BIM project in VR, but so far, there are no complete solutions that offer a pure IFC format based solution, which makes the VR integration vendor neutral. This work endeavors to develop a concept for a vendor-neutral BIM-VR integration with bi-directional data exchange in order to extend VR as a collaboration tool than a mere visualization tool in the BIM ecosystem.
keywords BIM; VR; IFC; Unity; BIM-VR integration; HMI
series CAADRIA
email
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_153004 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002