CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 628

_id caadria2018_268
id caadria2018_268
authors Lim, Joie, Janssen, Patrick and Stouffs, Rudi
year 2018
title Automated Generation of BIM Models from 2D CAD Drawings
doi https://doi.org/10.52842/conf.caadria.2018.2.061
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 61-70
summary Existing buildings are often lacking BIM models. This paper proposes a method to semi-automate the generation of BIM models from 2D CAD drawings. The method has two parts: the first part, 2D CAD drawing preparation, involves cleaning the drawings to obtain simplified 2D input geometry and the second, 3D BIM model generation, involves generating and extracting parameters to generate 3D BIM components. This research focuses on the semi-automation of the second part. The the model is generated storey by storey, with each building element type being processed. A demonstration was carried out for a case-study building. The main modelling strategies used by the method are described and key challenges are discussed.
keywords BIM; CAD drawings; conversion; generation; Grasshopper
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2018_173
id caadria2018_173
authors Stouffs, Rudi
year 2018
title A Triple Graph Grammar Approach to Mapping IFC Models into CityGML Building Models
doi https://doi.org/10.52842/conf.caadria.2018.2.041
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 41-50
summary A triple graph grammar approach is adopted as a formal framework for semantic and geometric conversion of IFC models into CityGML Level of Detail 3/4 building models. The triple graph grammar approach supports a semantic mapping from IFC to CityGML, the generation of conversion routines from this mapping, and an incremental approach to achieving a "complete and near-lossless" mapping. The objective of this approach is the development of a methodology and algorithms to automate the conversion of Building Information Models into CityGML building models, capturing both geometric and semantic information as available in the BIM models, in order to create semantically enriched 3D city models that include both exterior and interior structures.
keywords BIM; CityGML; conversion; semantic; automated
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2018_1302
id sigradi2018_1302
authors Côco Júnior, Verley Henry; Celani, Gabriela
year 2018
title From the automated generation of layouts to fabrication with the use of BIM: a new agenda for Architecture in the 21st century
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 23-30
summary Scripting, BIM and Digital Fabrication are already recognized as important skills in education and practice in Architecture in the 21st century. However, they are not always applied together to generate innovative results for the industry. This paper starts from the observation of the difficulty that prefabricated bathroom factories have in meeting a demand for mass customization and proposes a workflow that goes from the generation of layouts to modeling in BIM and the automated production of documents for manufacturing. The preliminary results demonstrate the possibility of changing the mass production culture of an industry, by means of applying the proposed workflow.
keywords Building Information Modeling; Process algorithm; Automation; Modular bathrooms; Prefabrication
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_438
id ecaade2018_438
authors Das, Subhajit
year 2018
title Interactive Artificial Life Based Systems, Augmenting Design Generation and Evaluation by Embedding Expert Opinion - A Human Machine dialogue for form finding.
doi https://doi.org/10.52842/conf.ecaade.2018.1.085
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 85-94
summary Evolution of natural life and subsequently selection of life forms is an interesting topic that has been explored multiple times. This area of research and its application has high relevance in evolutionary design and automated design generation. Taking inspiration from Charles Darwin's theory, all biological species were formed by the process of evolution based on natural selection of the fittest (Darwin, n.d.) this paper explains exploratory research showcasing semi-automatic design generation. This is realized by an interactive artificial selection tool, where the designer or the end user makes key decisions steering the propagation and breeding of future design artifacts. This paper, describes two prototypes and their use cases, highlighting interaction based optimal design selection. One of the prototypes explains a 2d organic shape creator using a metaball shape approach, while the other discusses a spatial layout generation technique for conceptual design.
keywords design generation; implicit surfaces; artificial life; decision making; artificial selection; spatial layout generation
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2018_265
id ecaade2018_265
authors Tauscher, Helga and Stouffs, Rudi
year 2018
title An IFC-to-CityGML Triple Graph Grammar
doi https://doi.org/10.52842/conf.ecaade.2018.1.517
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 517-524
summary A triple graph grammar has been adopted as a formal framework for semantic and geometric conversion of IFC models into CityGML Level of Detail (LoD) 3/4 building models. The advantages of a triple graph grammar approach are threefold: firstly, it allows for the conversion rules to be graphically defined; secondly, the generation of the conversion routines corresponding to these rules can be automated; and, thirdly, a complete mapping can be achieved in an incremental way by adding rule by rule.The objective of this work is the development of a methodology and algorithms to automate the conversion of Building Information Models into CityGML building models, capturing both geometric and semantic information as available in the BIM models, in order to create semantically enriched 3D city models that include both exterior and interior structures such as corridors, rooms, internal doors, and stairs.
keywords BIM; CityGML; Triple Graph Grammar; conversion
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2018_w14
id ecaade2018_w14
authors Karóczkai, Ákos
year 2018
title Parametric BIM Models in ARCHICAD - The Grasshopper - ARCHICAD Live Connection
doi https://doi.org/10.52842/conf.ecaade.2018.1.063
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 63-64
summary Parametric modelling is a very trending topic in the Architecture Engineering and Construction industry. There is an ever-growing challenge in the industry about how it is possible to document freeform and very design-oriented projects (created in Rhinoceros) in BIM. The ultimate goal of architectural and design projects is to be able to realize the building based on the 2D documentation. Currently Rhinoceros and Grasshopper are the industry-leading algorithmic solutions in the AEC industry. To complement such workflows, GRAPHISOFT developed a live connection between Grasshopper and ARCHICAD in order to generate BIM models, directly from the Visual Programming Interface (Grasshopper) and bridge the gap between the freeform, conceptual- and the BIM worlds.
keywords Parametric; BIM; ARCHICAD
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2018_200
id ecaade2018_200
authors Yetiº, Gizem, Yetkin, Ozan, Moon, Kongpyung and K?l?ç, Özkan
year 2018
title A Novel Approach for Classification of Structural Elements in a 3D Model by Supervised Learning
doi https://doi.org/10.52842/conf.ecaade.2018.1.129
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 129-136
summary Development of Computer Aided Design (CAD) has made a transition from 2D to 3D architectural representation and today, designers directly work with 3D digital models for the initial design process. While these digital models are being developed, layering and labelling of 3D geometries in a model become very crucial for a detailed design phase. However, when the number of geometries increases, the process of labelling and layering becomes simple labor. Hence, this paper proposes automation for labelling and layering of segmented 3D digital models based on architectural elements. In various parametric design environments (Rhinoceros, Grasshopper, Grasshopper Python and Grasshopper Python Remote), a training set is generated and applied to supervised learning algorithms to label architectural elements. Automation of the labelling and layering 3D geometries not only advances the workflow performance of design process but also introduces wider range of classification with simple features. Additionally, this research discovers advantages and disadvantages of alternative classification algorithms for such an architectural problem.
keywords Automation; Classification; Grasshopper Python; Layering; Labelling; Supervised Learning
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2018_176
id ecaade2018_176
authors Fisher-Gewirtzman, Dafna and Polak, Nir
year 2018
title Integrating Crowdsourcing & Gamification in an Automatic Architectural Synthesis Process
doi https://doi.org/10.52842/conf.ecaade.2018.1.439
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 439-444
summary This work covers the methodological approach that is used to gather information from the wisdom of crowd, to be utilized in a machine learning process for the automatic generation of minimal apartment units. The flexibility in the synthesis process enables the generation of apartment units that seem to be random and some are unsuitable for dwelling. Thus, the synthesis process is required to classify units based on their suitability. The classification is deduced from opinions of human participants on previously generated units. As the definition of "suitability" may be subjective, this work offers a crowdsourcing method in order to reach a large number of participants, that as a whole would allow to produce an objective classification. Gaming elements have been adopted to make the crowdsourcing process more intuitive and inviting for external participants.
keywords crowdsourcing and gamification; urban density; optimization; automated architecture synthesis; minimum apartments; visual openness
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia18_46
id acadia18_46
authors Marcus, Adam; Kudless, Andrew
year 2018
title Drawing Codes. Experimental protocols of architectural representation
doi https://doi.org/10.52842/conf.acadia.2018.046
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 46-55
summary Emerging technologies of design and production have largely changed the role of drawings within the contemporary design process from that of design generators to design products. As architectural design has shifted from an analog drawing-based paradigm to that of a computational model-based paradigm, the agency of the drawing as a critical and important form of design representation has greatly diminished. As our design tools have increasingly become computational and the production of our drawings have become predominantly automated, this paper examines the effects on the architectural discipline and attempts to catalog examples of how artists, designers, architects, and programmers have used rule-based techniques in the process of drawing as a critical act in their process. Furthermore, the paper presents the Drawing Codes project, an ongoing research and exhibition platform that critically investigates the intersection of code and drawing: how rules and constraints inform the ways architects document, analyze, represent, and design the built environment. The project features commissioned drawings by a range of contemporary architects and designers as a means of gathering a diverse set of perspectives on how computational techniques, but more importantly, computational thinking, can reexamine the role of architectural drawing as a creative and critical act.
keywords full paper, design theory & history, representation + perception, procedural design, art and technology
series ACADIA
type paper
email
last changed 2022/06/07 07:59

_id caadria2018_180
id caadria2018_180
authors Mekawy, Mohammed and Petzold, Frank
year 2018
title BIM-Based Model Checking in the Early Design Phases of Precast Concrete Structures
doi https://doi.org/10.52842/conf.caadria.2018.2.071
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 71-80
summary Designers often carry out their work in the early design stages with disregard to prefabrication requirements, leading to poorly thought out design decisions in terms of precast concrete planning efficiency. If precast expertise could be integrated early into design schemes, this would improve design efficiency, reduce errors and misalignments, and save time at every design iteration. The objective is not to replace precast domain experts, but to help architects make better-informed design decisions. This research is part of a wider investigation that aims to develop a rule-based expert system to support an automated review of precast concrete requirements in BIM models in the early design stages, proactively providing feedback for design decision support. This specific paper summarizes the theoretical part of the research and proposes a way to formalize precast expert knowledge as rule-sets in a tabular form that can be later programmed and integrated in a BIM platform for automated checking of BIM models.
keywords Precast Concrete; Rule-based checking; BIM-based model checking; Expert system; Decision tables
series CAADRIA
email
last changed 2022/06/07 07:58

_id sigradi2018_1646
id sigradi2018_1646
authors Franco Júnior, Júlio César; Costa, Heliara Aparecida; Minto Fabrício, Márcio
year 2018
title BIM and Aerial Photogrammetry: building documentation of E1 - USP São Carlos
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 574-580
summary This article demonstrates the integration process of aerial photogrammetry and BIM technologies for the purpose of supplying gaps in building documentation, resulting of changes during use-operation and maintenance of a historical building; as well as to record and document the project for future demands. For that, a research field was carried out with a RPAS – Remotely Piloted Aircraft Systems; and a study of the case of the E1 building, at USP São Carlos, a representative of the modern brazilian architecture, with few sources of information. The results demonstrate a satisfactory quality in the generation of orthomosaics for building documentation and consistent record for BIM as-is models
keywords Aerial Photogrammetry; BIM; Building documentation
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia18_156
id acadia18_156
authors Huang, Weixin; Zheng, Hao
year 2018
title Architectural Drawings Recognition and Generation through Machine Learning
doi https://doi.org/10.52842/conf.acadia.2018.156
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 156-165
summary With the development of information technology, the ideas of programming and mass calculation were introduced into the design field, resulting in the growth of computer- aided design. With the idea of designing by data, we began to manipulate data directly, and interpret data through design works. Machine Learning as a decision making tool has been widely used in many fields. It can be used to analyze large amounts of data and predict future changes. Generative Adversarial Network (GAN) is a model framework in machine learning. It’s specially designed to learn and generate output data with similar or identical characteristics. Pix2pixHD is a modified version of GAN that learns image data in pairs and generates new images based on the input. The author applied pix2pixHD in recognizing and generating architectural drawings, marking rooms with different colors and then generating apartment plans through two convolutional neural networks. Next, in order to understand how these networks work, the author analyzed their framework, and provided an explanation of the three working principles of the networks, convolution layer, residual network layer and deconvolution layer. Lastly, in order to visualize the networks in architectural drawings, the author derived data from different layer and different training epochs, and visualized the findings as gray scale images. It was found that the features of the architectural plan drawings have been gradually learned and stored as parameters in the networks. As the networks get deeper and the training epoch increases, the features in the graph become more concise and clearer. This phenomenon may be inspiring in understanding the designing behavior of humans.
keywords full paper, design study, generative design, ai + machine learning, ai & machine learning
series ACADIA
type paper
email
last changed 2022/06/07 07:49

_id ecaade2018_258
id ecaade2018_258
authors Kim, Jingoog, Maher, Mary Lou, Gero, John and Sauda, Eric
year 2018
title Metaphor - A tool for designing the next generation of human-building interaction
doi https://doi.org/10.52842/conf.ecaade.2018.2.149
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 149-158
summary Well known metaphors play an explanatory role in human-computer interaction (HCI) and support users in understanding an unfamiliar object with references to a familiar object, for example the desktop metaphor. Metaphors can also support designers in forming and exploring new concepts during the process of designing. We present metaphors that establish user expectations and provide guidance for new design concepts while integrating interactive technology in buildings to enable human-building interaction (HBI). HBI is a research area that studies how HCI research and practice provides opportunities for interactive buildings. Interactive experiences in architecture can be characterized by three metaphorical concepts: HBI as Device (user-centered view), HBI as Robot (building-centered view), and HBI as Friend (activity centered-view). These metaphors provide a tool for architects and HBI designers to explore designs that engage occupants' existing mental models from previous HCI experiences. We expand on each metaphor using analogical reasoning to define exploratory design spaces for HBI.
keywords Human-Building Interaction; Metaphor; Human-Computer Interaction; Interactive Architecture
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2018_050
id caadria2018_050
authors Lo, Tian Tian and Schnabel, Marc Aurel
year 2018
title Virtual & Augmented Studio Environment (VASE) - Developing the Virtual Reality Eco-System for Design Studios
doi https://doi.org/10.52842/conf.caadria.2018.1.443
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 443-452
summary Virtual Reality (VR) is being revived in major disciplines, including architecture. VR is no longer only employed for basic operations, such as construction of 3D models, dynamic renderings, closed-loop interaction, inside-out perspective and enhance sensory feedback. This paper explains how over the past twenty years technologies and software have evolved that a new eco-system for design processes have risen. This paper discusses how students made full use of both software and equipment in the whole design process; from ideas exploration to site analysis to form generation to design realization. Students have been exposed to a whole range of digital software tools in the beginning. As most of them were already familiar with modelling software, they have in particular been introduced to animation software, game engines and even 3D documentation software such as photogrammetry. Most importantly, they were led to IVE. The paper points out the benefits of adopting such methodology and the difficulties faced by the students at the various stages of the design process.
keywords Design Studio; Virtual Reality; Software and Equipment; Design Exchange
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2018_083
id caadria2018_083
authors Luo, Dan, Wang, Jinsong and Xu, Weiguo
year 2018
title Robotic Automatic Generation of Performance Model for Non-Uniform Linear Material via Deep Learning
doi https://doi.org/10.52842/conf.caadria.2018.1.039
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 39-48
summary In the following research, a systematic approach is developed to generate an experiment-based performance model that computes and customizes properties of non-uniform linear materials to accommodate the form of designated curve under bending and natural force. In this case, the test subject is an elastomer strip of non-uniform sections. A novel solution is provided to obtain sufficient training data required for deep learning with an automatic material testing mechanism combining robotic arm automation and image recognition. The collected training data are fed into a deep combination of neural networks to generate a material performance model. Unlike most traditional performance models that are only able to simulate the final form from the properties and initial conditions of the given materials, the trained neural network offers a two-way performance model that is also able to compute appropriate material properties of non-uniform materials from target curves. This network achieves complex forms with minimal and effective programmed materials with complicated nonlinear properties and behaving under natural forces.
keywords Material performance model; Deep Learning; Robotic automation; Material computation; Neural network
series CAADRIA
email
last changed 2022/06/07 07:59

_id ijac201816101
id ijac201816101
authors Nisztu, Maciejk and Pawe³ B. Myszkowsk
year 2018
title Usability of contemporary tools for the computational design of architectural objects: Review, features evaluation and reflection
source International Journal of Architectural Computing vol. 16 - no. 1, 58-84
summary This article is an overview focused on functionality and usability of selected contemporary approaches for the computational floor plan generation of architectural objects. This article describes current solutions for generative architectural design and focuses on their usability from the point of view of architectural design practice. Recent research papers and prototypes, as well as the most important tools (selected computer-aided design and BIM software) for generative design from the architectural perspective, are described. The functionalities and level of usability of present-day software and prototypes are described. In addition, the descriptive review of the research prototypes architectural design outcomes is present. Furthermore, the survey among active architects regarding the usage of computational tools in the professional practice and possible guidelines for the development of such tools are present. This article summarises with the conclusion about the current state of generative floor plan design tools, the lack of fully functional and developed commercial tools of this type on the market and future directions for the development of generative floor plans tools.
keywords Architectural design, case studies, computer-aided architectural design, optimisation in computer-aided architectural design, computer-aided architectural design applications
series journal
email
last changed 2019/08/07 14:03

_id ijac201816403
id ijac201816403
authors Pantazis, Evangelos and David Gerber
year 2018
title A framework for generating and evaluating façade designs using a multi-agent system approach
source International Journal of Architectural Computing vol. 16 - no. 4, 248-270
summary Digital design paradigms in architecture have been rooted in representational models which are geometry centered and therefore fail to capture building complexity holistically. Due to a lack of computational design methodologies, existing digital design workflows do little in predicting design performance in the early design stage and in most cases analysis and design optimization are done after a design is fixed. This work proposes a new computational design methodology, intended for use in the area of conceptual design of building design. The proposed methodology is implemented into a multi-agent system design toolkit which facilitates the generation of design alternatives using stochastic algorithms and their evaluation using multiple environmental performance metrics. The method allows the user to probabilistically explore the solution space by modeling the design parameters’ architectural design components (i.e. façade panel) into modular programming blocks (agents) which interact in a bottom-up fashion. Different problem requirements (i.e. level of daylight inside a space, openings) described into agents’ behavior allow for the coupling of data from different engineering fields (environmental design, structural design) into the a priori formation of architectural geometry. In the presented design experiment, a façade panel is modeled into an agent-based fashion and the multi-agent system toolkit is used to generate and evolve alternative façade panel configurations based on environmental parameters (daylight, energy consumption). The designer can develop the façade panel geometry, design behaviors, and performance criteria to evaluate the design alternatives. The toolkit relies on modular and functionally specific programming modules (agents), which provide a platform for façade design exploration by combining existing three-dimensional modeling and analysis software.
keywords Generative design, multi-agent systems, façade design, agent-based modeling, stochastic search
series journal
email
last changed 2019/08/07 14:04

_id ecaade2018_303
id ecaade2018_303
authors Werner, Liss C.
year 2018
title Biological Computation of Physarum - From DLA to spatial adaptive Voronoi
doi https://doi.org/10.52842/conf.ecaade.2018.2.531
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 531-536
summary Physarum polycephalum, also called slime mold or myxamoeba, has started attracting the attention of those architects, urban designers, and scholars, who work in experimental trans- and flexi-disciplines between architecture, computer sciences, biology, art, cognitive sciences or soft matter; disciplines that build on cybernetic principles. Slime mold is regarded as a bio-computer with intelligence embedded in its physical mechanisms. In its plasmodium stage, the single cell organism shows geometric, morphological and cognitive principles potentially relevant for future complexity in human-machines-networks (HMN) in architecture and urban design. The parametric bio-blob presents itself as a geometrically regulated graph structure-morphologically adaptive, logistically smart. It indicates cognitive goal-driven navigation and the ability to externally memorize (like ants). Physarum communicates with its environment. The paper introduces physarum polycephalum in the context of 'digital architecture' as a biological computer for self-organizing 2D- to 4D-geometry generation.
keywords generative geometry; bio-computation; Voronoi
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2018_216
id ecaade2018_216
authors Yavuz, Ecenur, Çolako?lu, Birgül and Aktaº, Begüm
year 2018
title From Pattern Making to Acoustic Panel Making Utilizing Shape Grammars
doi https://doi.org/10.52842/conf.ecaade.2018.2.477
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 477-486
summary This paper presents the application of shape grammars in a real case design problem. The design problem is stated as developing computational acoustic panel solution for classroom with various acoustic problems by modifying 2D pattern, which basically utilizes shape grammars. The study demonstrates interdisciplinary environment of design education and discussions of shape grammars in acoustic panel design and making. It includes different methods to design, like intuitive tendencies, computational thinking, computational tools, and computer simulations. The rule sets of the 2D (pencil-paper-based) pattern are intuitively created by the designer with simultaneous studies of understanding shape grammars. The study consists of three stages. The first stage illustrates 2D pattern generation utilizing computational thinking via shape grammar methodology, second stage illustrates computer generation of 2D pattern with the help of computational tools, and the third stage utilization and modification of this 2D pattern into 3D acoustic panel with feedbacks of computer simulations.
keywords computational design; computer-generated geometrical design; shape grammar; acoustic; odeon
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2018_118
id caadria2018_118
authors Chen, Zi-Ru, Liao, Chien-Jung and Chu, Chih-Hsing
year 2018
title An Assembly Guidance System of Tou Kung Based on Augmented Reality
doi https://doi.org/10.52842/conf.caadria.2018.1.349
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 349-358
summary Tou kung represent Chinese architecture. Due to the difficulty of learning from ancient books, some develop 3D assembly models. Still, there are limits while using 2D images for assembly instructions. The purpose of this study is to explore whether the application of AR technology can guide the process of tou kung assembly and address the recognition gap between paper illustrations and the physical assembly process. The method is to observes the user's tou kung assembly behavior and performance. Then the study proposed an dynamic simulation AR guidance system to help people not only understand the structure, but also the culture behind to reach the goal of education promotion.
keywords Augmented Reality; Tou-Kung; assembly
series CAADRIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_632099 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002