CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 627

_id sigradi2018_1875
id sigradi2018_1875
authors Kalantari, Cruze-Garza; Banner, Pamela; Contreras-Vidal, Jose Luis
year 2018
title Computationally Analyzing Biometric Data and Virtual Response Testing in Evaluating Learning Performance of Educational Setting Through
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 390-396
summary Due to construction costs, the human effects of innovations in architectural design can be expensive to test. Post-occupancy studies provide valuable data about what did and did not work in the past, but they cannot provide direct feedback for new ideas that have not yet been attempted. This presents designers with something of a dilemma. How can we harness the best potential of new technology and design innovation, while avoiding costly and potentially harmful mistakes? The current research use virtual immersion and biometric data to provide a new form of extremely rigorous human-response testing prior to construction. The researchers’ hypothesis was that virtual test runs can help designers to identify potential problems and successes in their work prior to its being physically constructed. The pilot study aims to develop a digital pre-occupancy toolset to understand the impact of different interior design variables of learning environment (independent variables) on learning performance (dependent variable). This project provides a practical toolset to test the potential human impacts of architectural design innovations. The research responds to a growing call in the field for evidence-based design and for an inexpensive means of evaluating the potential human effects of new designs. Our research will address this challenge by developing a prototype mobile brain-body imaging interface that can be used in conjunction with virtual immersion.
keywords Signal Processing; Brain; EEG; Virtual Reality; Big Data; Learning Performance
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_151
id ecaade2018_151
authors Kirschner, Ursula and Sperling, David
year 2018
title Mapping Urban Information as an Interdisciplinary Method for Geography, Art and Architecture Representations
doi https://doi.org/10.52842/conf.ecaade.2018.2.215
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 215-224
summary In the current context, access to daily realities is becoming increasingly mediated and processed by maps, flooding us with spatial data that appears to be objective but needs to be questioned, or even disputed. On the other hand, there are some relevant aspects of the urban experience that elude the main maps provided by apps or big data visualizing projects. So this article points out alternative ways of mapping urban information in this context, by means of presenting and discussing the methodology and results of a mapping workshop carried out at a German university in 2017 with interdisciplinary groups of students. The aim was to provide new insights and readings of the contemporary city. We explored and invented the urban with a mix of creative research methods.
keywords urban mapping information; critical cartography; urban spirit; cooperative urban exploration
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2018_237
id caadria2018_237
authors Yi, Taeha, Lee, Injung, Lee, Chae-Seok, Lee, Gi Bbeum, Kim, Meereh and Lee, Ji-Hyun
year 2018
title Interactive Data Acquisition for CBR System Based Smart Home Assistant - Utilizing Function-Behavior-Structure Framework
doi https://doi.org/10.52842/conf.caadria.2018.2.525
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 525-534
summary This research aims to develop a Case-Based Reasoning (CBR) system that recommends services to users in IoT environment. To develop this system, we establish a framework that designs raw data into analyzable information using Function-Behavior-Structure properties. Also, we develop an interactive flow of data acquisition that builds up cases gradually by gathering data through conversational interactions between the system and its user. This research develop a prototype of this system based on simulated cases. Finally, the prototype of this system was evaluated by experts in the field of system design to verify how the service (solution) recommended by system is similar with them. The results of this evaluation showed an agreement of average 54%, but found that there was a big difference from the experts in the specific context. This result implies that it is necessary to improve the context awareness in the reasoning process of this system.
keywords Case Based Reasoning; Function-Behavior-Structure framework; Service recommendation; IoT environment; Conversation
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2018_301
id ecaade2018_301
authors Cocho-Bermejo, Ana, Birgonul, Zeynep and Navarro-Mateu, Diego
year 2018
title Adaptive & Morphogenetic City Research Laboratory
doi https://doi.org/10.52842/conf.ecaade.2018.2.659
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 659-668
summary "Smart City" business model is guiding the development of future metropolises. Software industry sales to town halls for city management services efficiency improvement are, these days, a very pro?table business. Being the model decided by the industry, it can develop into a dangerous situation in which the basis of the new city design methodologies is decided by agents outside academia expertise. Drawing on complex science, social physics, urban economics, transportation theory, regional science and urban geography, the Lab is dedicated to the systematic analysis of, and theoretical speculation on, the recently coined "Science of Cities" discipline. On the research agenda there are questions arising from the synthesis of architecture, urban design, computer science and sociology. Collaboration with citizens through inclusion and empowerment, and, relationships "City-Data-Planner-Citizen" and "Citizen-Design-Science", configure Lab's methodology provoking a dynamic responsive process of design that is yet missing on the path towards the real responsive city.
keywords Smart City; Morphogenetic Urban Design; Internet of Things; Building Information Modelling; Evolutionary Algorithms; Machine Learning & Artificial Intelligence
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_262
id ecaade2018_262
authors Zarzycki, Andrzej
year 2018
title Strategies for the Integration of Smart Technologies into Buildings and Construction Assemblies
doi https://doi.org/10.52842/conf.ecaade.2018.1.631
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 631-640
summary This paper reviews current Internet of Things frameworks integrating embedded and distributed sensing and actuation in the context of research prototyping and the do-it-yourself movement. It focuses on the open-source and open-access technologies that can be applied into wiring smart cities, smart buildings, and smart building components. The paper contextualizes this discussion through the examples of the ESP8266 microcontroller (also known as NodeMCU) and Raspberry Pi single-board computer as well as web services such as Node-RED and If This Then That (IFTTT). The value of these platforms lies in the quasi-compatibility with other systems, scalability, and direct applicability to building technology prototyping. As such, they provide a natural and effective development path for a prototype to a full integration implementation.
keywords Smart Assemblies; Smart Buildings; Internet of Things; Raspberry Pi; Node-RED; MQTT
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2018_164
id ecaade2018_164
authors Chang, Mei-Chih, Buš, Peter, Tartar, Ayça, Chirkin, Artem and Schmitt, Gerhard
year 2018
title Big-Data Informed Citizen Participatory Urban Identity Design
doi https://doi.org/10.52842/conf.ecaade.2018.2.669
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 669-678
summary The identity of an urban environment is important because it contributes to self-identity, a sense of community, and a sense of place. However, under present-day conditions, the identities of expanding cities are rapidly deteriorating and vanishing, especially in the case of Asian cities. Therefore, cities need to build their urban identity, which includes the past and points to the future. At the same time, cities need to add new features to improve their livability, sustainability, and resilience. In this paper, using data mining technologies for various types of geo-referenced big data and combine them with the space syntax analysis for observing and learning about the socioeconomic behavior and the quality of space. The observed and learned features are identified as the urban identity. The numeric features obtained from data mining are transformed into catalogued levels for designers to understand, which will allow them to propose proper designs that will complement or improve the local traditional features. A workshop in Taiwan, which focuses on a traditional area, demonstrates the result of the proposed methodology and how to transform a traditional area into a livable area. At the same time, we introduce a website platform, Quick Urban Analysis Kit (qua-kit), as a tool for citizens to participate in designs. After the workshop, citizens can view, comment, and vote on different design proposals to provide city authorities and stakeholders with their ideas in a more convenient and responsive way. Therefore, the citizens may deliver their opinions, knowledge, and suggestions for improvements to the investigated neighborhood from their own design perspective.
keywords Urban identity; unsupervised machine learning; Principal Component Analysis (PCA); citizen participated design; space syntax
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_257
id ecaade2018_257
authors Guo, Zhe, Yin, Hao and Yuan, Philip F.
year 2018
title Spatial Redesign Method Based on Behavior Data Visualization System - UWB interior positioning technology based office space redesign method research
doi https://doi.org/10.52842/conf.ecaade.2018.2.577
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 577-584
summary There is a typical symbiotic relationship between behavior and space. Design and evaluation of space are also inseparable from people's behavioral needs. Therefore, the study of behavior patterns can be regarded as the process of exploring the relationship between human and space. Traditional behavioral research lacks precise micro-individual data and analytical tools to express complex environments, and is more inclined to macro and qualitative static analysis. With the maturity of indoor positioning technology, the use of big data as a medium to quantitatively study the laws of behavior has gradually penetrated into the micro-level of indoor space. This paper begins with a brief introduction of the behavioral performance research process in history. The paper then describes the method that constructs the observation, quantification and visualization process of behavior data by using UWB positioning technology and visualization implementation system through an on-site experiment of office space. The last part of this paper discusses the establishment of spatial redesign method by mining the behavior data, and translating the results into spatial attributes.
keywords behavior data visualization; UWB interior positioning technology; data mining; spatial redesign method
series eCAADe
email
last changed 2022/06/07 07:50

_id acadia18_118
id acadia18_118
authors Kalantari, Saleh; Contreras-Vidal, Jose Luis; Smith, Joshua Stanton; Cruz-Garza, Jesus; Banner, Pamela
year 2018
title Evaluating Educational Settings through Biometric Data and Virtual Response Testing
doi https://doi.org/10.52842/conf.acadia.2018.118
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 118-125
summary The physical design of the learning environment has been shown to contribute significantly to student performance and educational outcomes. However, the existing literature on this topic relies primarily on generalized observations rather than on rigorous empirical testing. Broad trends in environmental impacts have been noted, but there is a lack of detailed evidence about how specific design variables can affect learning performance. The goal of this study was to apply a new approach in examining classroom design innovations. We developed a protocol to evaluate the effectiveness of classroom designs by measuring the physical responses of study participants as they interacted with different designs using a virtual reality platform. Our hypothesis was that virtual “test runs” can help designers to identify potential problems and successes in their work prior to its being physically constructed. The results of our initial pilot study indicated that this approach could yield important results about human responses to classroom design, and that the virtual environment seemed to be a reliable testing substitute when compared against real classroom environments. In addition to leading toward practical conclusions about specific classroom design variables, this project provides a new kind of research method and toolset to test the potential human impacts of a wide variety of architectural innovations.
keywords work in progress, signal processing, eeg, virtual reality, big data, learning performance
series ACADIA
type paper
email
last changed 2022/06/07 07:52

_id sigradi2018_1333
id sigradi2018_1333
authors Lica Chokyu, Margaret
year 2018
title Shape Grammar and Social Housing: recognizing patterns in favelas’ buildings
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 170-175
summary Social Housing is worldwide problem, especially in underdeveloped countries. In Brazil, people do solve this issue with self-made houses, in irregular land occupations. As a result, those informal settlements, also known as favelas, proliferate in medium and big cities all over the country, in very poor infrastructure. On the other hand, governmental policies for social housing development are often criticized, because of several reasons, including architectural design, frequently unfit for the families assisted. The present work observes the architecture developed in self-made houses at Favela da Rocinha and presents Shape Grammar as an instrument for analysis of frequent solutions, in order to provide data for adequate architectural design.
keywords Shape grammar; Favelas; Informal architecture, Teaching observation
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2018_1627
id sigradi2018_1627
authors Nakamura Barros, Natália; Coeli Ruschel, Regina
year 2018
title Potential use of Internet of Things to support Life Cycle Assessment of buildings
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 880-885
summary This article summarize the initial discoveries of doctoral research, whose the principal aim is to analyze the use of Internet of Things to support Life Cycle Assessment of buildings. The first cycle of this thesis consists a preliminary investigation on electronics newspapers that deal the integration LCA and IoT. The results reveals IoT technology could provide real-time data collection, possibility of Big Data collection and monitoring, and greater precision and reliability of data. IoT-Based LCA is very promissory and innovative. In this way, this research intends to bring a relevant contribution to architecture, engineering and construction (AEC).
keywords Life cycle assessment; Internet of Things; LCA; IoT
series SIGRADI
email
last changed 2021/03/28 19:59

_id acadia18_186
id acadia18_186
authors Yin, Hao; Guo, Zhe; Zhao, Yao; Yuan, Philip F.
year 2018
title Behavior Visualization System Based on UWB Positioning Technology
doi https://doi.org/10.52842/conf.acadia.2018.186
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 186-195
summary This paper takes behavioral performance as a starting point and uses ultra-wideband (UWB) positioning technology and visualization methods to accurately collect and present in-place behavioral data so as to explore the behavioral characteristics of space users. In this process, we learned the observation, quantification, and presentation of behavioral data from the evolution of behavioral research. Secondly, after a comparative analysis of four types of indoor positioning technologies, we selected UWB-positioning technology and the JavaScript programming language as the development tools for a behavior visualization system. Next, we independently developed the behavior visualization system, which required a deep understanding of the working principle of UWB technology and the visualization method of the JavaScript programming language. Finally, the system was applied to an actual space, collecting and presenting users’ behavioral characteristics and habits in order to verify the applicability of the system in the field of behavioral research.
keywords full paper, design tools, ai + machine learning, big data, behavioral performance + simulation
series ACADIA
type paper
email
last changed 2022/06/07 07:57

_id caadria2018_211
id caadria2018_211
authors Zhao, Yao, Guo, Zhe, Yin, Hao, Yao, Jiawei and Yuan, Philip F.
year 2018
title Behavioral Data Analysis and Visualization System Base on UWB Interior Positioning Technology
doi https://doi.org/10.52842/conf.caadria.2018.2.217
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 217-226
summary The behavioral patterns of human in buildings influence the rational setting of space and function dramatically. However, due to the lack of data acquisition methods and data accuracy, big data analysis and visualization research in the microscopic aspects of indoor space is hampered. With the maturity of indoor positioning technology, UWB (Ultra Wideband) positioning technology based on narrow pulse has the characteristics of high transmission rate, low transmit power and strong penetrating ability, which provides more accurate results for the behavior data acquisition in indoor space. In this research, the big data thinking has been introduced into the behavioral performance analysis process. Therefore, data acquisition, data storage and management, behavioral data visualization and machine learning algorithms are integrated into a set of behavioral data analysis and visualization system, to quantitative research the behavioral characteristics of visitors in the exhibition hall by the on-site experiment .
keywords UWB interior positioning technology; Behavior Data Visualization; on-site experiment
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2018_370
id ecaade2018_370
authors Abdelmohsen, Sherif, Massoud, Passaint, El-Dabaa, Rana, Ibrahim, Aly and Mokbel, Tasbeh
year 2018
title A Computational Method for Tracking the Hygroscopic Motion of Wood to develop Adaptive Architectural Skins
doi https://doi.org/10.52842/conf.ecaade.2018.2.253
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 253-262
summary Low-cost programmable materials such as wood have been utilized to replace mechanical actuators of adaptive architectural skins. Although research investigated ways to understand the hygroscopic response of wood to variations in humidity levels, there are still no clear methods developed to track and analyze such response. This paper introduces a computational method to analyze, track and store the hygroscopic response of wood through image analysis and continuous tracking of angular measurements in relation to time. This is done through a computational closed loop that links the smart material interface (SMI) representing hygroscopic response with a digital and tangible interface comprising a Flex sensor, Arduino kit, and FireFly plugin. Results show no significant difference between the proposed sensing mechanism and conventional image analysis tracking systems. Using the described method, acquiring real-time data can be utilized to develop learning mechanisms and predict the controlled motion of programmable material for adaptive architectural skins.
keywords Hygroscopic properties of wood; Adaptive architecture; Programmable materials; Real-time tracking
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2023_39
id sigradi2023_39
authors Borges, Marina, Karantino, Lucas and Gorges, Diego
year 2023
title Walkability: Digital Parametric Process for Analyzing and Evaluating Walkability Criteria in Peripheral Central Regions of Belo Horizonte
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 397–408
summary According to one of the Sustainable Development Goals (UN, 2018), it is important for cities to be inclusive, safe, resilient, and sustainable. Therefore, it is necessary to value pedestrians and consequently active mobility, giving priority to the concepts of the Transportation Oriented Development (TOD) methodology. Although the Master Plan (BELO HORIZONTE, 2019) proposes that areas located in regional centralities are enhancing active mobility, can residents actually benefit from these resources at a walkable distance to access basic services? Thus, the aim of this research is to utilize digital technologies to visualize, analyze, and assess pedestrians' access conditions to commerce and basic services, identifying areas lacking infrastructure. The goal is for the model to serve as a reference for the development of public policies. To achieve this, metadata was used for parametric modeling to study walkability in the peripheral region of the city of Belo Horizonte.
keywords Walkability, Urban Data Analysis, Urban Design, Parametric Urbanism, Algorithmic Logic
series SIGraDi
email
last changed 2024/03/08 14:07

_id caadria2018_085
id caadria2018_085
authors Chung, Chia-Chun and Jeng, Tay-Sheng
year 2018
title Information Extraction Methodology by Web Scraping for Smart Cities - Using Machine Learning to Train Air Quality Monitor for Smart Cities
doi https://doi.org/10.52842/conf.caadria.2018.2.515
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 515-524
summary This paper presents an opportunistic sensing system for air quality monitoring to forecast the implicit factors of air pollution. Opportunistic sensing is performed by web scraping in the social network service to extract information. The data source for the air quality analysis combines two types of information: explicit and implicit information. The objective is to develop the information extraction methodology by web scraping for smart cities. The application development methodology has potential for solving real-world problems such as air pollution by data comparison between social activity observing and data collecting in sensor network.
keywords smart city; open data; web scraping; social media; machine learning
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2023_375
id sigradi2023_375
authors Consalter Diniz, Maria Luisa, Polverini Boeing, Lais, dos Santos Carvalho, Wendel and Bertola Duarte, Rovenir
year 2023
title Natural Language Processing, Sentiment Analysis, and Urban Studies: A Systematic Review
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1761–1772
summary This paper discusses the potential of using data from social media and location data platforms to create cartographies that enhance our understanding of urban dynamics. Natural Language Processing (NLP) and sentiment analysis are highlighted as essential tools for comprehending and categorizing this data. The study conducted a systematic review of NLP and sentiment analysis applications in urban studies, covering 27 peer-reviewed journals and conference papers published between 2018 and 2023. The research classified applications into six categories: urban livability, governance and management, user and landscape perception, land use and zoning, public health, and transportation and mobility. Most studies primarily relied on data from social media platforms like Twitter and location data sources such as Google Maps and Trip Advisor. Challenges include dealing with irrelevant or misleading information in publicly available data and limited accuracy when analyzing sentiments of non-English-speaking populations.
keywords Natural language processing, Sentiment analysis, Urban studies, Digital cartographies, Systematic review.
series SIGraDi
email
last changed 2024/03/08 14:09

_id sigradi2018_1879
id sigradi2018_1879
authors Danesh Zand, Foroozan; Baghi, Ali; Kalantari, Saleh
year 2018
title Digitally Fabricating Expandable Steel Structures Using Kirigami Patterns
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 724-731
summary This article presents a computational approach to generating architectural forms for large spanning structures based on a “paper-cutting” technique. In this traditional artform, a flat sheet is cut and scored in such a way that a small application of force prompts it to expand into a three-dimensional structure. To make these types of expandable structures feasible at an architectural scale, four challenges had to be met during the research. The first was to map the kinetic properties of a paper-cut model, investigating formative parameters such as the width and frequency of cuts to determine how they affect the resulting structure. The second challenge was to computationally simulate the paper-cut structure in an accurate fashion. We accomplished this task using finite element analysis in the Ansys software platform. The third challenge was to create a prediction model that could precisely forecast the characteristics of a paper-cutting pattern. We made significant strides in this demanding task by using a data-mining approach and regression analysis through 400 simulations of various cutting patterns. The final challenge was to verify the efficiency and accuracy of our prediction model, which we accomplished through a series of physical prototypes. Our resulting computational paper-cutting system can be used to estimate optimal cutting patterns and to predict the resulting structural characteristics, thereby providing greater rigor to what has previously been an ad-hoc and experimental design approach.
keywords Transformable Paper-cut; Design method; Prediction Model; Regression analysis; Physical prototype
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_178
id ecaade2018_178
authors Kroc, Tomasz and Walczak, Bartosz M.
year 2018
title GIS Technologies Implementation Based on The EU Directive Inspire - A case study of the Pabianice city
doi https://doi.org/10.52842/conf.ecaade.2018.1.489
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 489-496
summary This paper presents the experience of implementating GIS technologies at a county town urban planning department. The necessity to implement GIS technology is partly dictated by the requirements of the INSPIRE Directive. The discussed case provides valuable information about the problems and challenges that cities have in Poland, while performing their obligations under the directive. The process of preparing the necessary geographical database corresponding to existing planning documents raises many legal and technical problems. The presented case illustrates the whole process associated with the preparation of digitization and publication of urban plans. At the same time, it is worth to see the numerous benefits that the city obtains after publishing GIS data. Attention should also be paid to the further development of GIS and the chances of their use, especially in urban centers.
keywords INSPIRE; GIS technologies implementation; urban planning; sharing geographic dates
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2018_w11
id ecaade2018_w11
authors Kunze, Antje, Marz, Michael and Wyka, Edyta
year 2018
title Smart Communities - Unleashing the Potential of Data for Smart Communities
doi https://doi.org/10.52842/conf.ecaade.2018.1.069
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 69-70
summary Are you excited about data, mapping and analytics and want to learn new skills? Then you'll love our hands-on workshop on how to collect and blend open and premium data with the cities' everyday planning and management tasks, analyze urban environments, and deliver the results in stunning 2D and 3D web mapping apps.
keywords smart city; GIS; data visualisation; data driven design
series eCAADe
email
last changed 2022/06/07 07:52

_id sigradi2018_1587
id sigradi2018_1587
authors Maia, Marcelo; Borges, Jéssica; Brito, Michele; de Sá, Ana Isabel
year 2018
title Internet of Things Technology and Policy in Belo Horizonte Public Transportation System
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 568-573
summary From a critical point of view regarding Smart Cities, this paper presents an overview of Brazilian policies concerning the application of Internet of Things (IoT) on public transportation systems, using as a case study the city of Belo Horizonte. We performed a critical analysis of its public transportation system considering the already installed IoT infrastructure, including mobile communication technology that uses distributed locative media among users. Our main focus was understanding its use, potential and political dimension, specially concerning terms of use and data distribution and sharing between users, public administration and private companies that compose the transportation system.
keywords urban transportation system; technopolitics; internet of things; smart city; instant city
series SIGRADI
email
last changed 2021/03/28 19:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_351213 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002