CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 537

_id ecaade2018_164
id ecaade2018_164
authors Chang, Mei-Chih, Buš, Peter, Tartar, Ayça, Chirkin, Artem and Schmitt, Gerhard
year 2018
title Big-Data Informed Citizen Participatory Urban Identity Design
doi https://doi.org/10.52842/conf.ecaade.2018.2.669
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 669-678
summary The identity of an urban environment is important because it contributes to self-identity, a sense of community, and a sense of place. However, under present-day conditions, the identities of expanding cities are rapidly deteriorating and vanishing, especially in the case of Asian cities. Therefore, cities need to build their urban identity, which includes the past and points to the future. At the same time, cities need to add new features to improve their livability, sustainability, and resilience. In this paper, using data mining technologies for various types of geo-referenced big data and combine them with the space syntax analysis for observing and learning about the socioeconomic behavior and the quality of space. The observed and learned features are identified as the urban identity. The numeric features obtained from data mining are transformed into catalogued levels for designers to understand, which will allow them to propose proper designs that will complement or improve the local traditional features. A workshop in Taiwan, which focuses on a traditional area, demonstrates the result of the proposed methodology and how to transform a traditional area into a livable area. At the same time, we introduce a website platform, Quick Urban Analysis Kit (qua-kit), as a tool for citizens to participate in designs. After the workshop, citizens can view, comment, and vote on different design proposals to provide city authorities and stakeholders with their ideas in a more convenient and responsive way. Therefore, the citizens may deliver their opinions, knowledge, and suggestions for improvements to the investigated neighborhood from their own design perspective.
keywords Urban identity; unsupervised machine learning; Principal Component Analysis (PCA); citizen participated design; space syntax
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2018_322
id caadria2018_322
authors Lu, Hangxin, Gu, Jiaxi, Li, Jin, Lu, Yao, Müller, Johannes, Wei, Wenwen and Schmitt, Gerhard
year 2018
title Evaluating Urban Design Ideas from Citizens from Crowdsourcing and Participatory Design
doi https://doi.org/10.52842/conf.caadria.2018.2.297
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 297-306
summary Participatory planning aims at engaging multiple stakeholders including citizens in various stages of planning projects. Adopting participatory design approach in the early stage of planning project facilitates the ideation process of citizens. We have implemented a participatory design study during the 2017 Beijing Design Week and have conducted an interactive design project called "Design your perfect Dashilar: You Place it!". Participants including local residents and visitors were asked to redesign the Yangmeizhu street, a historical street located in Dashilar area by rearranging the buildings of residential, commercial, administration, and cultural functionalities. Apart from using digital design tools, questionnaires, interviews, and sensor network were applied to collect personal preferences data. Computational approaches were used to extract features from designs and personal preferences. In this paper, we illustrate the implementation of the participatory design and the possible applications by combining with crowdsourcing. Participatory design data and citizens profiles with personal preferences were analysed and their correlations were computed. By using crowdsourcing and participatory design, this study shows that the digitalization of participatory design with data science perspective can indicate the implicit requirements, needs and design ideas of citizens.
keywords Participatory design; Crowdsourcing; Human computation; Citizen Design Science; Human Computer Interaction
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2018_375
id ecaade2018_375
authors Pienaru, Meram-Irina
year 2018
title The City as a Playground - Game tools for interactive planning
doi https://doi.org/10.52842/conf.ecaade.2018.2.679
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 679-686
summary The emergence of a data space (Big Data and IoT) and, with it, the proliferation of communication means, led many scholars to describe the city through a series of concepts like the informational city, the intelligent city or the cybercity, all of them being characterized by a strong networked consciousness (Castells, Graham, Boyer). The hypothesis of this paper is that game methodology is now gaining momentum and can act as enabler of smarter communities by an increasing access to data infrastructures. This is why the city can be seen as a series of connected playgrounds where interactive tools can support citizen engagement and decision making processes. It does so by going through relevant theoretical background on gamification in the urban context and best practices, to finally describe two student projects developed at CHORA Conscious City, TU Berlin. The two projects are experimental and explore the capabilities of interactive tools in order to support planning processes.
keywords Gamification; Interactive tools; Networked consciousness; Intelligent communities
series eCAADe
email
last changed 2022/06/07 08:00

_id caadria2018_245
id caadria2018_245
authors Chowdhury, Shuva and Schnabel, Marc Aurel
year 2018
title An Algorithmic Methodology to Predict Urban Form - An Instrument for Urban Design
doi https://doi.org/10.52842/conf.caadria.2018.2.401
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 401-410
summary We question the recent practices of conventional and participatory urban design approaches and offer a middle approach by exploring computational design tools in the design system. On the one hand, the top-down urban planning approaches investigate urban form as a holistic matter which only can be calibrated by urban professionals. These approaches are not able to offer enough information to the end users to predict the urban form. On the other hand, the bottom-up urban design approaches cannot visualise predicted urban scenarios, and most often the design decisions stay as general assumptions. We developed and tested a parametric design platform combines both approaches where all the stakeholders can participate and visualise multiple urban scenarios in real-time feedback. Parametric design along with CIM modelling system has influenced urban designers for a new endeavour in urban design. This paper presents a methodology to generate and visualise urban form. We present a novel decision-making platform that combines city level and local neighbourhood data to aid participatory urban design decisions. The platform allows for stakeholder collaboration and engagement in complex urban design processes.
keywords knowledge-based system; algorithmic methodology ; design decision tool; urban form;
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2018_301
id ecaade2018_301
authors Cocho-Bermejo, Ana, Birgonul, Zeynep and Navarro-Mateu, Diego
year 2018
title Adaptive & Morphogenetic City Research Laboratory
doi https://doi.org/10.52842/conf.ecaade.2018.2.659
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 659-668
summary "Smart City" business model is guiding the development of future metropolises. Software industry sales to town halls for city management services efficiency improvement are, these days, a very pro?table business. Being the model decided by the industry, it can develop into a dangerous situation in which the basis of the new city design methodologies is decided by agents outside academia expertise. Drawing on complex science, social physics, urban economics, transportation theory, regional science and urban geography, the Lab is dedicated to the systematic analysis of, and theoretical speculation on, the recently coined "Science of Cities" discipline. On the research agenda there are questions arising from the synthesis of architecture, urban design, computer science and sociology. Collaboration with citizens through inclusion and empowerment, and, relationships "City-Data-Planner-Citizen" and "Citizen-Design-Science", configure Lab's methodology provoking a dynamic responsive process of design that is yet missing on the path towards the real responsive city.
keywords Smart City; Morphogenetic Urban Design; Internet of Things; Building Information Modelling; Evolutionary Algorithms; Machine Learning & Artificial Intelligence
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_210
id ecaade2018_210
authors Ezzat, Mohammed
year 2018
title A Computational Tool for Mapping the Users' Urban Cognition - A Framework and a Representation for the Evolutionary Optimization of the Fuzzy Binary Relation between the Urban Conceptions of "Us" and "Others"
doi https://doi.org/10.52842/conf.ecaade.2018.1.667
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 667-676
summary The paper proposes a computational tool for simulating the users' urban cognitive systems, or more specifically the long-term memory associated with the knowledge of urbanism and its related urban visual features. The tool builds on our comprehensive theory of Urbanism, which presents a monolithic, structured, comprehensive, professional conception of Urbanism based on which any relativistic users' urban conceptions could be predicted as a restructuring of the professional conception. These versatile relativistic conceptions would emerge based on a nurturing environment, which is a conception of the empirical/anthropological collected data of the intended users' reflections against their preferred constructed urban environments. Once the users' conceptions of Urbanism are formulated, which is the first phase of the simulation, the users' impressions against any examined urban constructs are attainable, which is the second phase of the simulation. The two phases, the framework, would be monolithically represented by a proposed novel cellular graph. The proposed computational tool is thought of as a robust technique for the computational incorporation of the users' urban identity, and some of its constituents could be considered as a needed common platform of communication for a successful Human-Computer interaction in the field of urban analysis/design.
keywords a comprehensive model of Urbanism; a default professional conception of Urbanism; the relativistic users' conceptions of Urbanism ; recognized extracted urban features ; the users' urban identity; A comprehensive theory for space syntax:
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2018_285
id ecaade2018_285
authors Tsikoliya, Shota, Vasko, Imrich, Miškovièová, Veronika, Olontsev, Ivan and Kovaøík, David
year 2018
title Programmable Bending - grain-informed simulation and design
doi https://doi.org/10.52842/conf.ecaade.2018.2.309
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 309-316
summary The project investigates the potential of programmable bending - a strategy, which informs bending simulations of multilayered veneer elements with the data of its anisotropic grain structure. Project further examines the possibilities of using these irregular material characteristics as a design driver. The project questions the possibility of informing the design with the particular characteristics of the material structure and of creating complex geometries from non-customized or minimally customizes mass-produced elements. Project develops a workflow, in which a two-dimensional scan of the material is transformed into a vector field and consequently into a mesh with variable stiffness characteristics. The stiffness of each edge within a mesh was calculated basing on an angle between this edge and the relevant vector within a vector-field. That resulted in realistic simulation, which differentiated bending characteristics along the grain and perpendicular to the grain. Uneven connection of several layers of active-bended veneer allows to accumulate local stresses and pre-program bending characteristics of the structure. As a result active-bended structure forms particular predefined and predesigned shape and possesses locally variable stiffness and flexibility. The project applies this strategy to the design of the pavilion located within the urban context of a public space.
keywords programmable bending; grain-informed simulation; veneer; computational design
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2018_257
id ecaade2018_257
authors Guo, Zhe, Yin, Hao and Yuan, Philip F.
year 2018
title Spatial Redesign Method Based on Behavior Data Visualization System - UWB interior positioning technology based office space redesign method research
doi https://doi.org/10.52842/conf.ecaade.2018.2.577
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 577-584
summary There is a typical symbiotic relationship between behavior and space. Design and evaluation of space are also inseparable from people's behavioral needs. Therefore, the study of behavior patterns can be regarded as the process of exploring the relationship between human and space. Traditional behavioral research lacks precise micro-individual data and analytical tools to express complex environments, and is more inclined to macro and qualitative static analysis. With the maturity of indoor positioning technology, the use of big data as a medium to quantitatively study the laws of behavior has gradually penetrated into the micro-level of indoor space. This paper begins with a brief introduction of the behavioral performance research process in history. The paper then describes the method that constructs the observation, quantification and visualization process of behavior data by using UWB positioning technology and visualization implementation system through an on-site experiment of office space. The last part of this paper discusses the establishment of spatial redesign method by mining the behavior data, and translating the results into spatial attributes.
keywords behavior data visualization; UWB interior positioning technology; data mining; spatial redesign method
series eCAADe
email
last changed 2022/06/07 07:50

_id sigradi2018_1875
id sigradi2018_1875
authors Kalantari, Cruze-Garza; Banner, Pamela; Contreras-Vidal, Jose Luis
year 2018
title Computationally Analyzing Biometric Data and Virtual Response Testing in Evaluating Learning Performance of Educational Setting Through
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 390-396
summary Due to construction costs, the human effects of innovations in architectural design can be expensive to test. Post-occupancy studies provide valuable data about what did and did not work in the past, but they cannot provide direct feedback for new ideas that have not yet been attempted. This presents designers with something of a dilemma. How can we harness the best potential of new technology and design innovation, while avoiding costly and potentially harmful mistakes? The current research use virtual immersion and biometric data to provide a new form of extremely rigorous human-response testing prior to construction. The researchers’ hypothesis was that virtual test runs can help designers to identify potential problems and successes in their work prior to its being physically constructed. The pilot study aims to develop a digital pre-occupancy toolset to understand the impact of different interior design variables of learning environment (independent variables) on learning performance (dependent variable). This project provides a practical toolset to test the potential human impacts of architectural design innovations. The research responds to a growing call in the field for evidence-based design and for an inexpensive means of evaluating the potential human effects of new designs. Our research will address this challenge by developing a prototype mobile brain-body imaging interface that can be used in conjunction with virtual immersion.
keywords Signal Processing; Brain; EEG; Virtual Reality; Big Data; Learning Performance
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia18_118
id acadia18_118
authors Kalantari, Saleh; Contreras-Vidal, Jose Luis; Smith, Joshua Stanton; Cruz-Garza, Jesus; Banner, Pamela
year 2018
title Evaluating Educational Settings through Biometric Data and Virtual Response Testing
doi https://doi.org/10.52842/conf.acadia.2018.118
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 118-125
summary The physical design of the learning environment has been shown to contribute significantly to student performance and educational outcomes. However, the existing literature on this topic relies primarily on generalized observations rather than on rigorous empirical testing. Broad trends in environmental impacts have been noted, but there is a lack of detailed evidence about how specific design variables can affect learning performance. The goal of this study was to apply a new approach in examining classroom design innovations. We developed a protocol to evaluate the effectiveness of classroom designs by measuring the physical responses of study participants as they interacted with different designs using a virtual reality platform. Our hypothesis was that virtual “test runs” can help designers to identify potential problems and successes in their work prior to its being physically constructed. The results of our initial pilot study indicated that this approach could yield important results about human responses to classroom design, and that the virtual environment seemed to be a reliable testing substitute when compared against real classroom environments. In addition to leading toward practical conclusions about specific classroom design variables, this project provides a new kind of research method and toolset to test the potential human impacts of a wide variety of architectural innovations.
keywords work in progress, signal processing, eeg, virtual reality, big data, learning performance
series ACADIA
type paper
email
last changed 2022/06/07 07:52

_id ecaade2018_151
id ecaade2018_151
authors Kirschner, Ursula and Sperling, David
year 2018
title Mapping Urban Information as an Interdisciplinary Method for Geography, Art and Architecture Representations
doi https://doi.org/10.52842/conf.ecaade.2018.2.215
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 215-224
summary In the current context, access to daily realities is becoming increasingly mediated and processed by maps, flooding us with spatial data that appears to be objective but needs to be questioned, or even disputed. On the other hand, there are some relevant aspects of the urban experience that elude the main maps provided by apps or big data visualizing projects. So this article points out alternative ways of mapping urban information in this context, by means of presenting and discussing the methodology and results of a mapping workshop carried out at a German university in 2017 with interdisciplinary groups of students. The aim was to provide new insights and readings of the contemporary city. We explored and invented the urban with a mix of creative research methods.
keywords urban mapping information; critical cartography; urban spirit; cooperative urban exploration
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2018_158
id caadria2018_158
authors Koh, Immanuel
year 2018
title Learning Design Trends from Social Networks - Data Mining, Analysis & Visualization of Grasshopper® Online User Community
doi https://doi.org/10.52842/conf.caadria.2018.2.277
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 277-286
summary The paper has demonstrated that the increasingly online relationship between designers and their digital tools can be quantitatively represented, described and analyzed through the data-mining of design-domain specific and tool-based social network (i.e. Grasshopper3D). It explores design trends' correlations based on network user groups' size, users' demographics, nodes' degree centrality and discussion threads' popularity.
keywords Social Networks; Design Trends; Big Data; Parametric Design Tools; Data Visualization
series CAADRIA
email
last changed 2022/06/07 07:51

_id sigradi2018_1333
id sigradi2018_1333
authors Lica Chokyu, Margaret
year 2018
title Shape Grammar and Social Housing: recognizing patterns in favelas’ buildings
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 170-175
summary Social Housing is worldwide problem, especially in underdeveloped countries. In Brazil, people do solve this issue with self-made houses, in irregular land occupations. As a result, those informal settlements, also known as favelas, proliferate in medium and big cities all over the country, in very poor infrastructure. On the other hand, governmental policies for social housing development are often criticized, because of several reasons, including architectural design, frequently unfit for the families assisted. The present work observes the architecture developed in self-made houses at Favela da Rocinha and presents Shape Grammar as an instrument for analysis of frequent solutions, in order to provide data for adequate architectural design.
keywords Shape grammar; Favelas; Informal architecture, Teaching observation
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_382
id ecaade2018_382
authors Tsitsipa, Vasiliki, Achillias, George and Parthenios, Panagiotis
year 2018
title Using Big Data to Design User-Centric Museums - From visitors loyal to museums to museums loyal to users
doi https://doi.org/10.52842/conf.ecaade.2018.2.233
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 233-242
summary With a view to design-led digital applications that meet the material world, we create hybrid spaces, where the user/visitor is active and takes part in one action in the material and virtual world. So, today, museums all over the world face the opportunity to re-invent themselves and their relationships with their visitors. They establish a complex non-linear dynamic ecosystem. ?his transformation brings out series of queries, such as the role of the architect that redefines the museum process and the new terms in the museum context. This paper refers to the dynamic changes that define a hybrid environment, describes the transformation into a user-centric museum and the approach to create visitor/user-centered museum and how this was applied into the Archaeological Museum in Chania, Crete. A museum that places visitors at the center of its mission.
keywords user-centric museum; hypersonalisation; museography; experience; architecture
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2018_237
id caadria2018_237
authors Yi, Taeha, Lee, Injung, Lee, Chae-Seok, Lee, Gi Bbeum, Kim, Meereh and Lee, Ji-Hyun
year 2018
title Interactive Data Acquisition for CBR System Based Smart Home Assistant - Utilizing Function-Behavior-Structure Framework
doi https://doi.org/10.52842/conf.caadria.2018.2.525
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 525-534
summary This research aims to develop a Case-Based Reasoning (CBR) system that recommends services to users in IoT environment. To develop this system, we establish a framework that designs raw data into analyzable information using Function-Behavior-Structure properties. Also, we develop an interactive flow of data acquisition that builds up cases gradually by gathering data through conversational interactions between the system and its user. This research develop a prototype of this system based on simulated cases. Finally, the prototype of this system was evaluated by experts in the field of system design to verify how the service (solution) recommended by system is similar with them. The results of this evaluation showed an agreement of average 54%, but found that there was a big difference from the experts in the specific context. This result implies that it is necessary to improve the context awareness in the reasoning process of this system.
keywords Case Based Reasoning; Function-Behavior-Structure framework; Service recommendation; IoT environment; Conversation
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia18_186
id acadia18_186
authors Yin, Hao; Guo, Zhe; Zhao, Yao; Yuan, Philip F.
year 2018
title Behavior Visualization System Based on UWB Positioning Technology
doi https://doi.org/10.52842/conf.acadia.2018.186
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 186-195
summary This paper takes behavioral performance as a starting point and uses ultra-wideband (UWB) positioning technology and visualization methods to accurately collect and present in-place behavioral data so as to explore the behavioral characteristics of space users. In this process, we learned the observation, quantification, and presentation of behavioral data from the evolution of behavioral research. Secondly, after a comparative analysis of four types of indoor positioning technologies, we selected UWB-positioning technology and the JavaScript programming language as the development tools for a behavior visualization system. Next, we independently developed the behavior visualization system, which required a deep understanding of the working principle of UWB technology and the visualization method of the JavaScript programming language. Finally, the system was applied to an actual space, collecting and presenting users’ behavioral characteristics and habits in order to verify the applicability of the system in the field of behavioral research.
keywords full paper, design tools, ai + machine learning, big data, behavioral performance + simulation
series ACADIA
type paper
email
last changed 2022/06/07 07:57

_id ecaade2018_138
id ecaade2018_138
authors Abdulmawla, Abdulmalik, Schneider, Sven, Bielik, Martin and Koenig, Reinhard
year 2018
title Integrated Data Analysis for Parametric Design Environment - mineR: a Grasshopper plugin based on R
doi https://doi.org/10.52842/conf.ecaade.2018.2.319
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 319-326
summary In this paper we introduce mineR- a tool that integrates statistical data analysis inside the parametric design environment Grasshopper. We first discuss how the integration of statistical data analysis would improve the parametric modelling workflow. Then we present the statistical programming language R. Thereafter, we show how mineR is built to facilitate the use of R in the context of parametric modelling. Using two example cases, we demonstrate the potential of implementing mineR in the context of urban design and analysis. Finally, we discuss the results and possible further developments.
keywords Statistical Data Analysis; Parametric Design
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_232
id ecaade2018_232
authors Al Bondakji, Louna, Chatzi, Anna-Maria, Heidari Tabar, Minoo, Wesseler, Lisa-Marie and Werner, Liss C.
year 2018
title VR-visualization of High-dimensional Urban Data
doi https://doi.org/10.52842/conf.ecaade.2018.2.773
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 773-780
summary The project aims to investigate the possibility of VR in a combination of visualizing high-dimensional urban data. Our study proposes a data-based tool for urban planners, architects, and researchers to 3D visualize and experience an urban quarter. Users have a possibility to choose a specific part of a city according to urban data input like "buildings, streets, and landscapes". This data-based tool is based on an algorithm to translate data from Shapefiles (.sh) in a form of a virtual cube model. The tool can be scaled and hence applied globally. The goal of the study is to improve understanding of the connection and analysis of high-dimensional urban data beyond a two-dimensional static graph or three-dimensional image. Professionals may find an optimized condition between urban data through abstract simulation. By implementing this tool in the early design process, researchers have an opportunity to develop a new vision for extending and optimizing urban materials.
keywords Abstract Urban Data Visualization; Virtual Reality; Geographical Information System
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_162
id ecaade2018_162
authors Alkadri, Miktha, Turrin, Michela and Sariyildiz, Sevil
year 2018
title Toward an Environmental Database - Exploring the material properties from the point cloud data of the existing environment
doi https://doi.org/10.52842/conf.ecaade.2018.2.263
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 263-270
summary The utilization of point cloud as a 3D laser scanning product has reached across multi-disciplines in terms of data processing, data visualization, and data analysis. This study particularly investigates further the use of typical attributes of raw point cloud data consisting of XYZ (position information), RGB (colour information) and I (intensity information). By exploring the optical and thermal properties of the given point cloud data, it aims at compensating the material and texture information that is usually remained behind by architects during the conceptual design stage. Calculation of the albedo, emissivity and the reflectance values from the existing context specifically direct the architects to predict the type of materials for the proposed design in order to keep the balance of the surrounding Urban Heat Island (UHI) effect. Therefore, architects can have a comprehensive analysis of the existing context to deal with the microclimate condition before a design decision phase.
keywords point cloud data; material characteristics; albedo; emissivity; reflectance value
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_219
id ecaade2018_219
authors Bai, Nan, Ye, Wenqia, Li, Jianan, Ding, Huichao, Pienaru, Meram-Irina and Bunschoten, Raoul
year 2018
title Customised Collaborative Urban Design - A Collective User-based Urban Information System through Gaming
doi https://doi.org/10.52842/conf.ecaade.2018.1.419
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 419-428
summary As we step into a new data-based information age, it is important to get citizens involved in the whole design process. Our research tries to build up a user-based urban information system by collecting the data of neighborhood land use preference from all the residents through gaming. The result of each individual decision will be displayed in real time using Augmented Reality technology, while the collective decision dataset will be stored, analyzed and learnt by computer, forming an optimal layout that meets the highest demand of the community. A pre-experiment has been conducted in a. an abstract virtual site and b. an existing site by collecting opinions from 122 participants, which shows that the system works well as a new method for collaborative design. This system has the potential to be applied both in realistic planning processes, as a negotiation toolkit, and in virtual urban forming, in the case of computer games or space colonization.
keywords Collaborative Design; Customization; Urban Design; Gaming; Information System
series eCAADe
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 26HOMELOGIN (you are user _anon_92649 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002