CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 602

_id ecaade2018_156
id ecaade2018_156
authors Kovacs, Adam Tamas and Micsik, András
year 2018
title Building Information Dashboard as Decision Support during Design Phase
doi https://doi.org/10.52842/conf.ecaade.2018.1.281
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 281-288
summary This paper discusses the Building Information Dashboard, a data representation method which provides a solid basis for decision-makers to make optimal decisions during the design phase of an Architecture, Engineering, and Construction project. We describe an example project workflow where the dashboard is integrated. We sum up the evaluation method, which is the basis of the dashboard, and we research what type of visualization method is best suited to representing this type of data. To this end, an evaluation matrix was created to compare the alternative charts. We take into account what kind of information such a dashboard should represent and what kind of features it should have. We suggest layouts for different use cases - both for professional and non-professional decision-makers, as well as for discipline designers.
keywords BIM; dashboard; decision support; data visualization; data analytics
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaaderis2018_104
id ecaaderis2018_104
authors Hollberg, Alexander, Hildebrand, Linda and Habert, Guillaume
year 2018
title Environmental design - Lessons learned from teaching LCA
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 65-74
keywords Architects largely define the environmental impact a building will cause throughout its life cycle. Especially decisions taken in early design stages have a great influence on the environmental performance. The integration of environmental assessment into the design process requires adequate tools and basic knowledge of the architects using them. This paper discusses both aspects by means of two case studies with students. In both case studies, the goal was to use Life Cycle Assessment (LCA) to optimize the environmental performance of the building in the design process. The results of the first case study proved the benefits of using LCA-based information for decision-making, but some issues of using the tool during the design process became evident. In the second case study an improved LCA-tool was employed that proved to be applicable by all students. Nevertheless, only one group used the feedback to optimize the building design in an iterative process as intended by the supervisors. This leads to the conclusion that the difficulty of environmental design shifted from a lack of adequate assessment tools to the question of the design approach.
series eCAADe
email
last changed 2018/05/29 14:33

_id caadria2018_016
id caadria2018_016
authors Zahedi, Ata and Petzold, Frank
year 2018
title Utilization of Simulation Tools in Early Design Phases Through Adaptive Detailing Strategies
doi https://doi.org/10.52842/conf.caadria.2018.2.011
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 11-20
summary Decisions taken at early stages of building design have a significant effect on the planning steps for the entire lifetime of the project as well as the performance of the building throughout its lifecycle (MacLeamy 2004). Building Information Modelling (BIM) could bring forward and enhance the planning and decision-making processes by enabling the direct reuse of data hold by the model for diverse analysis and simulation tasks (Borrmann et al. 2015). The architect today besides a couple of simplified simulation tools almost exclusively uses his know-how for evaluating and comparing design variants in the early stages of design. This paper focuses on finding new ways to facilitate the use of analytical and simulation tools during the important early phases of conceptual building design, where the models are partially incomplete. The necessary enrichment and proper detailing of the design model could be achieved by means of dialogue-based interaction concepts with analytical and simulation tools through adaptive detailing strategies. This concept is explained using an example scenario for design process. A generic description of the aimed dialog-based interface to various simulation tools will also be discussed in this paper using an example scenario.
keywords BIM; Early Design Stages; Adaptive Detailing ; Communication Protocols; Design Variants
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2018_162
id ecaade2018_162
authors Alkadri, Miktha, Turrin, Michela and Sariyildiz, Sevil
year 2018
title Toward an Environmental Database - Exploring the material properties from the point cloud data of the existing environment
doi https://doi.org/10.52842/conf.ecaade.2018.2.263
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 263-270
summary The utilization of point cloud as a 3D laser scanning product has reached across multi-disciplines in terms of data processing, data visualization, and data analysis. This study particularly investigates further the use of typical attributes of raw point cloud data consisting of XYZ (position information), RGB (colour information) and I (intensity information). By exploring the optical and thermal properties of the given point cloud data, it aims at compensating the material and texture information that is usually remained behind by architects during the conceptual design stage. Calculation of the albedo, emissivity and the reflectance values from the existing context specifically direct the architects to predict the type of materials for the proposed design in order to keep the balance of the surrounding Urban Heat Island (UHI) effect. Therefore, architects can have a comprehensive analysis of the existing context to deal with the microclimate condition before a design decision phase.
keywords point cloud data; material characteristics; albedo; emissivity; reflectance value
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_135
id ecaade2018_135
authors Briscoe, Danelle
year 2018
title Living Wall - Information Workflow and Collaboration
doi https://doi.org/10.52842/conf.ecaade.2018.1.207
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 207-212
summary Beyond the benefits of standard documentation agreeance and project management coordination, many architects and other design professionals express concern over the limitation of Building Information Modelling (BIM) process may have on the design process, or better yet social responsibility or ecological benefit. For Living Wall facade exploration, this research suggests BIM is arguably an effective tool to support innovation in the design process, as well as promote collaboration between ecology and architecture disciplines. Ecological measures and data collection evidence further validates BIM procedural clarity and recognizes building façade exploration both technologically and environmentally.
keywords Living Wall; BIM; data collection
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_339
id ecaade2018_339
authors Fereos, Pavlos, Tsiliakos, Marios and Jaschke, Clara
year 2018
title Spaceship Tectonics - Design Computation Pedagogy for Generative Sci-Fi Building Skins
doi https://doi.org/10.52842/conf.ecaade.2018.2.357
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 357-366
summary Sci-Fi architecture, both as digital or physical representations, despite their inherent intricacy, lack the spatial depth of a structured interior, material definition or program information. This discrepancy, combined with the plethora of available sci-fi motifs, inspired the development of an integrated teaching approach with the academic objective to utilize computational methods for analysis, reproduction and composition of generative building skins, and consequently architecture, which aims to be 'outside of this world' as a sci-fi design quality-enriched result of our reality. The proposed methodology is implemented at the Spaceship Architecture Design Studio at the University of Innsbruck. Its capacity to achieve a successful assimilation of design computation in the curriculum is subsequently assessed by the documentation and quantitative/qualitative evaluation of the designs developed during two academic years, in line with a generative facade articulation schema, without however undermining the rest of the virtues of tectonic spaces. The introduction of a theme like sci-fi where the design objective is not clearly defined, is examined in comparison to similar approaches, towards the corroboration of the pedagogical method proposed.
keywords Pedagogy; Computation; Facade Design; Generative; Sci-Fi; Patterns
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2018_190
id ecaade2018_190
authors Gless, Henri-Jean, Halin, Gilles and Hanser, Damien
year 2018
title Need of a BIM-agile Coach to Oversee Architectural Design - From one pedagogical experiment to another
doi https://doi.org/10.52842/conf.ecaade.2018.1.445
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 445-450
summary This paper is part of our research on the digital transition in architecture, and more particularly on the integration of BIM (Building Information Management) technology. Indeed, in the field of AEC in France, this transition is still ongoing and remains difficult for architects. BIM technology changes the way people work and communicate, and remains only a tool without a method behind it. His arrival then raises technical but also human questions. Our research then turns to the social sciences and project management sciences to see if the creation or adaptation of project management methods can facilitate this integration. In other fields such as industry, software engineering, or HMI design, we have seen the emergence of agile methods that focus more on design teams, and therefore communication, than on the process itself. After experimenting with several agile practices, we identified the need for a design team to be mentored by someone in the role of facilitator or coach. This article describes how we can transfer to students an agile practice called BIM-agile Coach that we experimented during a weeklong workshop.
keywords Architectural design; Agile methods; Agile practices; BIM technology; Collaborative design; Project management
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2018_258
id ecaade2018_258
authors Kim, Jingoog, Maher, Mary Lou, Gero, John and Sauda, Eric
year 2018
title Metaphor - A tool for designing the next generation of human-building interaction
doi https://doi.org/10.52842/conf.ecaade.2018.2.149
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 149-158
summary Well known metaphors play an explanatory role in human-computer interaction (HCI) and support users in understanding an unfamiliar object with references to a familiar object, for example the desktop metaphor. Metaphors can also support designers in forming and exploring new concepts during the process of designing. We present metaphors that establish user expectations and provide guidance for new design concepts while integrating interactive technology in buildings to enable human-building interaction (HBI). HBI is a research area that studies how HCI research and practice provides opportunities for interactive buildings. Interactive experiences in architecture can be characterized by three metaphorical concepts: HBI as Device (user-centered view), HBI as Robot (building-centered view), and HBI as Friend (activity centered-view). These metaphors provide a tool for architects and HBI designers to explore designs that engage occupants' existing mental models from previous HCI experiences. We expand on each metaphor using analogical reasoning to define exploratory design spaces for HBI.
keywords Human-Building Interaction; Metaphor; Human-Computer Interaction; Interactive Architecture
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaaderis2018_112
id ecaaderis2018_112
authors Kontovourkis, Odysseas and Konatzii, Panagiota
year 2018
title Design-static analysis and environmental assessment investigation based on a kinetic formwork-driven by digital fabrication principles
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 131-140
keywords This research focuses on design-static analysis and environmental assessment procedures that are based on the idea of a flexible kinetic formwork used as the automated mechanism for the production of bricks for porous wall structures. A key aspect of this investigation is the Life Cycle Assessment (LCA) analysis study that is applied in order to achieve, in parallel with the automated procedure, the sustainable potential of the products. For this purpose, the design and construction flexibility of the product is taken into account from the early design decision making stage by examining different sizes of bricks under fabrication including massive or porous ones in order to test their design and static performance, aiming to adapt their shape in multiple functional and environmental scenarios. In parallel, the LCA impact of the given design scenarios are taken into consideration, again from the early design phase, and include, among other objectives, material minimization, less environmental impact of building materials and less energy consumption based on the proposed digital fabrication technology. This is examined by comparing digital design and robotic automated results using three types of ecological materials.
series eCAADe
email
last changed 2018/05/29 14:33

_id ecaade2018_193
id ecaade2018_193
authors Ostrowska-Wawryniuk, Karolina and Nazar, Krzysztof
year 2018
title Generative BIM Automation Strategies for Prefabricated Multi-Family Housing Design
doi https://doi.org/10.52842/conf.ecaade.2018.1.247
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 247-256
summary The increasing housing shortage in contemporary Poland calls for efficient ways of design and construction. In the context of time efficiency and shrinking manpower, prefabrication is considered as one of the means of introducing low and middle income housing to the market. The article presents the process of developing an experimental tool for aiding multi-family housing architectural design with the use of prefabrication. We use the potential of BIM technology as a flexible environment for comparing multiple design options and, therefore, supporting the decision-making process. The presented experiment is realized in the Autodesk Revit environment and incorporates custom generative scripts developed in Dynamo-for-Revit and Grasshopper. The prototype tool analyzes an input Revit model and simulates a prefabricated alternative based on the user-specified boundary conditions. We present our approach to the analyzing and the splitting of the input model as well as five different strategies of performing the simulation within the Revit environment.
keywords Building Information Modeling; generative BIM; residential building design; prefabrication; design automation; Dynamo
series eCAADe
email
last changed 2022/06/07 08:00

_id caadria2018_209
id caadria2018_209
authors Yao, Jiawei, Lin, Yuqiong, Zhao, Yao, Yan, Chao, Li, Changlin and Yuan, Philip F.
year 2018
title Augmented Reality Technology based Wind Environment Visualization
doi https://doi.org/10.52842/conf.caadria.2018.1.369
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 369-377
summary Considering the outdoor environment at the initial stage of design process plays a significant role on future building performance. Augmented Reality (AR) technology applied in this research can integrate real world building morphology information and virtual world ventilation information seamlessly that rapidly and directly provides designers information for observation and evaluation. During the case study of "2017 Shanghai DigitalFUTURE" summer workshop, a research on augmented reality technology based wind environment visualization was carried on. The achievement with an application software not only showed the geometric information of the real world objects (such as buildings), but also the virtual wind environment has displayed. Thus, these two kinds of information can complement and superimpose each other. This AR technology based software brings multiple synthetic together, which can (1) visualize the air flow around buildings that provides designers rapid and direct information for evaluation; (2) deal with wind-environment-related data quantitatively and present in an intuitive, easy-to-interpret graphical way; and (3) be further developed as a visualization system based on built-in environments in the future, which contributes to rapid evaluation of a series of programs at the beginning of the building design.
keywords Environment visualization; Augmented reality technology; Fast response; Outdoor ventilation
series CAADRIA
email
last changed 2022/06/07 07:57

_id sigradi2018_1335
id sigradi2018_1335
authors Wang, Sining; Crolla, Kristof
year 2018
title Fuzzy set theory for parametric design: A case study of non-standard architectural practice in China
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 44-51
summary This paper introduces the fuzzy set theory to parametric architectural design and presents it as a strategy which architects can adopt to control a project’s complexity during the stage of design development. We discuss how the fuzzy set theory‘s ‘vagueness’ allows architects to delay their decision makings, especially when they are facing implementing situations where it is difficult to provide additional information needed for complex construction. In this study, we first introduce a metric for project complexity proposed by William Mitchell, who uses the notion of design content and construction content. Followed this we will explain the fuzzy set theory and its rationale for parametric designs.
keywords Fuzzy set theory; Parametric design; Non-standard façade; Local affordances; China
series SIGRADI
email
last changed 2021/03/28 19:59

_id caadria2018_228
id caadria2018_228
authors Newton, David
year 2018
title Accommodating Change and Open-Ended Search in Design Optimization
doi https://doi.org/10.52842/conf.caadria.2018.2.175
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 175-184
summary Many real-world architectural multi-objective problems (MOPs) are dynamic and may have objectives, decision variables, and constraints that change during the optimization process. These problems are known as dynamic MOPs (DMOPs). Dynamic multi-objective evolutionary algorithms (DMOEAs) have emerged in the fields of optimization, operations research, and computer science as one way to address the challenges posed by DMOPs. DMOEAs offer new capacities for exploration and interaction with the designer, but they have not yet been studied in the field of architecture. This research addresses these issues through the development of a unique interactive DMOEA-based design tool for the conceptual design phase. We propose a new modification to the popular nondominated sorting genetic algorithm II (NSGA-II), that we call the dynamic progressive for architecture NSGA-II (DPA-NSGA-II). We show that DPA-NSGA-II outperforms NSGA-II in finding novel solutions.
keywords algorithmic design; multi-objective optimization; evolutionary computation; parametric design; generative design
series CAADRIA
email
last changed 2022/06/07 07:58

_id sigradi2018_1806
id sigradi2018_1806
authors Barbosa Cabral, Sthefane Adrielly; Alejandro Nome, Carlos; Queiroz, Natália
year 2018
title Pilot study of numerical modeling tool to evaluate the thermal performance of walls according to Brazilian standards
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 286-293
summary The paper discusses a numerical modeling tool to evaluate thermal performance of building envelope according to Brazilian NBR15.220 and NBR 15.575 standards. Contemporary integrated design processes require the development of early design stage decision support mechanisms in order to optimize building performance. The development of the proposed tool focused on early stage decisions on building envelope design and integrating tool usability in the design process. Results indicate that the proposed tool provides basis for decision making that respond to Brazilian standards previously disregarded by participants. Also indicate improved understanding on parameters that affect building envelope thermal performance.
keywords Thermal performance, Numeric modeling tool, Building envelope, Evidence Based Design
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_405
id ecaade2018_405
authors Belém, Catarina and Leit?o, António
year 2018
title From Design to Optimized Design - An algorithmic-based approach
doi https://doi.org/10.52842/conf.ecaade.2018.2.549
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 549-558
summary Stringent requirements of efficiency and sustainability lead to the demand for buildings that have good performance regarding different criteria, such as cost, lighting, thermal, and structural, among others. Optimization can be used to ensure that such requirements are met. In order to optimize a design, it is necessary to generate different variations of the design, and to evaluate each variation regarding the intended criteria. Currently available design and evaluation tools often demand manual and time-consuming interventions, thus limiting design variations, and causing architects to completely avoid optimization or to postpone it to later stages of the design, when its benefits are diminished. To address these limitations, we propose Algorithmic Optimization, an algorithmic-based approach that combines an algorithmic description of building designs with automated simulation processes and with optimization processes. We test our approach on a daylighting optimization case study and we benchmark different optimization methods. Our results show that the proposed workflow allows to exclude manual interventions from the optimization process, thus enabling its automation. Moreover, the proposed workflow is able to support the architect in the choice of the optimization method, as it enables him to easily switch between different optimization methods.
keywords Algorithmic Design; Algorithmic Analysis; Algorithmic Optimization; Lighting optimization; Black-Box optimization
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_227
id ecaade2018_227
authors Chatzitsakyris, Panagiotis
year 2018
title EventMode - A new computational design tool for integrating human activity data within the architectural design workflow
doi https://doi.org/10.52842/conf.ecaade.2018.1.649
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 649-656
summary Architectural designers are currently depending on a multitude of elaborate computational tools in order to explore, manipulate and visualize the geometric form of their building projects. However, if architecture can be perceived as the manipulation of geometric form in direct relation to human activities and events that take place inside it, then it is evident that such design parameters are not sufficiently represented in the currently available modeling software. Would it be possible to introduce the human activity element in the aforementioned computational tools in a way that informs the design process and improves the final building product? This paper attempts to answer this question by introducing a new experimental design tool that enables the creation of parametric human activity envelopes within three-dimensional digital models. The novel approach is that this tool enables the parametric interaction of these components with the actual building geometry and generates novel visual and data representations of the 3D model. The goal is to improve the decision-making process of architects as well as their clients by enabling them to evaluate and iterate their designs based not only on the building's form but also on the human spatial events that take place inside it. A prototype implementation demonstrates the tool's practical application through three design examples.
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2018_297
id ecaade2018_297
authors Elesawy, Amr, Caranovic, Stefan, Zarb, Justin, Jayathissa, Prageeth and Schlueter, Arno
year 2018
title HIVE Parametric Tool - A simplified energy simulation tool for educating architecture students
doi https://doi.org/10.52842/conf.ecaade.2018.1.657
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 657-666
summary This paper presents HIVE, a new open source design toolbox, which focuses on teaching concepts of Energy and Climate Systems integration in buildings. .The aim is to empower architecture students to integrate aspects of energy efficiency during the architectural design process. The tool employs a simplified input format designed for ease of use and provides almost instantaneous, direct feedback to support students of all experience levels in the early, conceptual building design stages, where numerous iterations need to be conducted efficiently within a short period of time.The project aims to create a robust toolbox that will become an innovative reference in architecture and engineering - lectures, design studios, and project-based learning - through its capacity to quickly, and effectively, translate building energy systems concepts into graphic formats central to building design teaching and practice. The fast feedback that the users receive to their design parameters changes will enable an effective and quick build-up of tacit knowledge about building energy systems, complementary to the explicit, theoretical knowledge that is usually taught in courses, thus creating a more complete learning experience.
keywords Building Simulation; Low-energy architecture; Integrated curriculum; PV Assessment; Simplified GUI; Architecture Education
series eCAADe
email
last changed 2022/06/07 07:55

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id sigradi2018_1646
id sigradi2018_1646
authors Franco Júnior, Júlio César; Costa, Heliara Aparecida; Minto Fabrício, Márcio
year 2018
title BIM and Aerial Photogrammetry: building documentation of E1 - USP São Carlos
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 574-580
summary This article demonstrates the integration process of aerial photogrammetry and BIM technologies for the purpose of supplying gaps in building documentation, resulting of changes during use-operation and maintenance of a historical building; as well as to record and document the project for future demands. For that, a research field was carried out with a RPAS – Remotely Piloted Aircraft Systems; and a study of the case of the E1 building, at USP São Carlos, a representative of the modern brazilian architecture, with few sources of information. The results demonstrate a satisfactory quality in the generation of orthomosaics for building documentation and consistent record for BIM as-is models
keywords Aerial Photogrammetry; BIM; Building documentation
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_243
id ecaade2018_243
authors Gardner, Nicole
year 2018
title Architecture-Human-Machine (re)configurations - Examining computational design in practice
doi https://doi.org/10.52842/conf.ecaade.2018.2.139
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 139-148
summary This paper outlines a research project that explores the participation in, and perception of, advanced technologies in architectural professional practice through a sociotechnical lens and presents empirical research findings from an online survey distributed to employees in five large-scale architectural practices in Sydney, Australia. This argues that while the computational design paradigm might be well accepted, understood, and documented in academic research contexts, the extent and ways that computational design thinking and methods are put-into-practice has to date been less explored. In engineering and construction, technology adoption studies since the mid 1990s have measured information technology (IT) use (Howard et al. 1998; Samuelson and Björk 2013). In architecture, research has also focused on quantifying IT use (Cichocka 2017), as well as the examination of specific practices such as building information modelling (BIM) (Cardoso Llach 2017; Herr and Fischer 2017; Son et al. 2015). With the notable exceptions of Daniel Cardoso Llach (2015; 2017) and Yanni Loukissas (2012), few scholars have explored advanced technologies in architectural practice from a sociotechnical perspective. This paper argues that a sociotechnical lens can net valuable insights into advanced technology engagement to inform pedagogical approaches in architectural education as well as strategies for continuing professional development.
keywords Computational design; Sociotechnical system; Technology adoption
series eCAADe
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_318372 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002