CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 298

_id ecaade2018_258
id ecaade2018_258
authors Kim, Jingoog, Maher, Mary Lou, Gero, John and Sauda, Eric
year 2018
title Metaphor - A tool for designing the next generation of human-building interaction
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 149-158
doi https://doi.org/10.52842/conf.ecaade.2018.2.149
summary Well known metaphors play an explanatory role in human-computer interaction (HCI) and support users in understanding an unfamiliar object with references to a familiar object, for example the desktop metaphor. Metaphors can also support designers in forming and exploring new concepts during the process of designing. We present metaphors that establish user expectations and provide guidance for new design concepts while integrating interactive technology in buildings to enable human-building interaction (HBI). HBI is a research area that studies how HCI research and practice provides opportunities for interactive buildings. Interactive experiences in architecture can be characterized by three metaphorical concepts: HBI as Device (user-centered view), HBI as Robot (building-centered view), and HBI as Friend (activity centered-view). These metaphors provide a tool for architects and HBI designers to explore designs that engage occupants' existing mental models from previous HCI experiences. We expand on each metaphor using analogical reasoning to define exploratory design spaces for HBI.
keywords Human-Building Interaction; Metaphor; Human-Computer Interaction; Interactive Architecture
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia18_434
id acadia18_434
authors Meibodi, Mania Aghaei ; Jipa, Andrei; Giesecke, Rena; Shammas, Demetris; Bernhard, Mathias; Leschok, Matthias; Graser, Konrad; Dillenburger, Benjamin
year 2018
title Smart Slab. Computational design and digital fabrication of a lightweight concrete slab
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 434-443
doi https://doi.org/10.52842/conf.acadia.2018.434
summary This paper presents a computational design approach and novel digital fabrication method for an optimized lightweight concrete slab using a 3D-printed formwork. Smart Slab is the first concrete slab fabricated with a 3D-printed formwork. It is a lightweight concrete slab, displaying three-dimensional geometric differentiation on multiple scales. The optimization of slab systems can have a large impact on buildings: more compact slabs allow for more usable space within the same building volume, refined structural concepts allow for material reduction, and integrated prefabrication can reduce complexity on the construction site. Among the main challenges is that optimized slab geometries are difficult to fabricate in a conventional way because non-standard formworks are very costly. Novel digital fabrication methods such as additive manufacturing of concrete can provide a solution, but until now the material properties and the surface quality only allow for limited applications. The fabrication approach presented here therefore combines the geometric freedom of 3D binderjet printing of formworks with the structural performance of fiber reinforced concrete. Using 3D printing to fabricate sand formwork for concrete, enables the prefabrication of custom concrete slab elements with complex geometric features with great precision. In addition, space for building systems such as sprinklers and Lighting could be integrated in a compact way. The design of the slab is based on a holistic computational model which allows fast design optimization and adaptation, the integration of the planning of the building systems, and the coordination of the multiple fabrication processes involved with an export of all fabrication data. This paper describes the context, design drivers, and digital design process behind the Smart Slab, and then discusses the digital fabrication system used to produce it, focusing on the 3D-printed formwork. It shows that 3D printing is already an attractive alternative for custom formwork solutions, especially when strategically combined with other CNC fabrication methods. Note that smart slab is under construction and images of finished elements can be integrated within couple of weeks.
keywords full paper, digital fabrication, computation, generative design, hybrid practices
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id acadia18_166
id acadia18_166
authors Kvochick, Tyler
year 2018
title Sneaky Spatial Segmentation. Reading Architectural Drawings with Deep Neural Networks and Without Labeling Data
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 166-175
doi https://doi.org/10.52842/conf.acadia.2018.166
summary Currently, it is nearly impossible for an artificial neural network to generalize a task from very few examples. Humans, however, excel at this. For instance, it is not necessary for a designer to see thousands or millions of unique examples of how to place a given drawing symbol in a way that meets the economic, aesthetic, and performative goals of the project. In fact, the goals can be (and usually are) communicated abstractly in natural language. Machine learning (ML) models, however, do need numerous examples. The methods that we explore here are an attempt to circumvent this in order to make ML models more immediately useful.

In this work, we present progress on the application of contemporary ML techniques to the design process in the architecture, engineering, and construction (AEC) industry. We introduce a technique to partially circumvent the data hungriness of neural networks, which is a significant impediment to their application outside of the ML research community. We also show results on the applicability of this technique to real-world drawings and present research that addresses how some fundamental attributes of drawings as images affect the way they are interpreted in deep neural networks. Our primary contribution is a technique to train a neural network to segment real-world architectural drawings after using only generated pseudodrawings.

keywords full paper, representation + perception, computation, ai & machine learning
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id sigradi2018_1867
id sigradi2018_1867
authors Alawadhi, Mohammad; Yan, Wei
year 2018
title Geometry from 3D Photogrammetry for Building Energy Modeling
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 631-637
summary Building energy modeling requires skilled labor, and there is a need to make environmental assessments of buildings more efficient and accessible for architects. A building energy model is based on collecting data from the real, physical world and representing them as a digital model. Recent digital photogrammetry tools can reconstruct real-world geometry by transforming photographs into 3D models automatically. However, there is a lack of accessible workflows that utilize this technology for building energy modeling and simulations. This paper presents a novel methodology to generate a building energy model from a photogrammetry-based 3D model using available tools and computer algorithms.
keywords 3D scanning; Building energy modeling; Building energy simulation; Digital photogrammetry; Photo-to-BEM
series SIGRADI
email
last changed 2021/03/28 19:58

_id ijac201816406
id ijac201816406
authors As, Imdat; Siddharth Pal and Prithwish Basu
year 2018
title Artificial intelligence in architecture: Generating conceptual design via deep learning
source International Journal of Architectural Computing vol. 16 - no. 4, 306-327
summary Artificial intelligence, and in particular machine learning, is a fast-emerging field. Research on artificial intelligence focuses mainly on image-, text- and voice-based applications, leading to breakthrough developments in self-driving cars, voice recognition algorithms and recommendation systems. In this article, we present the research of an alternative graph- based machine learning system that deals with three-dimensional space, which is more structured and combinatorial than images, text or voice. Specifically, we present a function-driven deep learning approach to generate conceptual design. We trained and used deep neural networks to evaluate existing designs encoded as graphs, extract significant building blocks as subgraphs and merge them into new compositions. Finally, we explored the application of generative adversarial networks to generate entirely new and unique designs.
keywords Architectural design, conceptual design, deep learning, artificial intelligence, generative design
series journal
email
last changed 2019/08/07 14:04

_id ecaadesigradi2019_459
id ecaadesigradi2019_459
authors Bourdakis, Vassilis and Tsangrassoulis, Aris
year 2019
title Dynamic Façade Design Studio - From sketches to microcontrollers
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 725-730
doi https://doi.org/10.52842/conf.ecaade.2019.2.725
summary The paper presents the outcome of two semesters running a dynamic façade design studio (2014 and 2018) to 3rd and 4th year undergraduates, using computational design, simulation and visualization tools in designing environmentally activated building envelopes. The paper discusses the problems faced by the students and the teaching team throughout the design process and finally suggests ways of integrating microcontrollers as a teaching tool enabling students to comprehend the logic, complexities and overall mechanics of responsive environmental design.
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id caadria2018_125
id caadria2018_125
authors Bungbrakearti, Narissa, Cooper-Wooley, Ben, Odolphi, Jorke, Doherty, Ben, Fabbri, Alessandra, Gardner, Nicole and Haeusler, M. Hank
year 2018
title HOLOSYNC - A Comparative Study on Mixed Reality and Contemporary Communication Methods in a Building Design Context
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 401-410
doi https://doi.org/10.52842/conf.caadria.2018.1.401
summary The integration of technology into the design process has enabled us to communicate through various modes of virtuality, while more traditional face-to-face collaborations are becoming less frequent, specifically for large scale companies. Both modes of communication have benefits and disadvantages - virtual communication enables us to connect over large distances, however can often lead to miscommunication, while face-to-face communication builds stronger relationship, however may be problematic for geographically dispersed teams. Mixed Reality is argued to be a hybrid of face-to-face and virtual communication, and is yet to be integrated into the building design process. Despite its current limitations, such as field of view, Mixed Reality is an effective tool that generates high levels of nonverbal and verbal communication, and encourages a high and equal level of participation in comparison to virtual and face-to-face communication. Being a powerful communication tool for complex visualisations, it would be best implemented in the later stages of the building design process where teams can present designs to clients or where multiple designers can collaborate over final details.
keywords Mixed Reality; Communication; Hololens; Collaboration; Virtual
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2018_268
id ecaade2018_268
authors Cheang, Jeremy Jenn Ren and Loh, Paul
year 2018
title FOAM - Custom Single Task Construction Robot
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 157-164
doi https://doi.org/10.52842/conf.ecaade.2018.1.157
summary This paper discusses the design and fabrication of a novel in-situ fabrication system for building cladding envelope. The construction industry has utilised automation in onsite construction for many decades. This research examines how through the automation process, different construction techniques can be combined to generate a new system that is both performance and design lead. Through abstracting generative effects through the design process, the results are feedback into the fabrication process to construct a more meaningful dialogue between form, material and fabrication procedure. Using electronic prototyping, the researchers tested the system through large-scale prototypes. The paper concludes by discussing the interaction between material and design. We examine how this is evident in the machine workflow. The article addresses the theme of the conference through examining a revision of tool in design that embodied research knowledge for a more sustainable environment.
keywords Digital Fabrication, Design workflow, Automation
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2018_181
id caadria2018_181
authors Chun, Junho, Lee, Juhun and Park, Daekwon
year 2018
title TOPO-JOINT - Topology Optimization Framework for 3D-Printed Building Joints
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 205-214
doi https://doi.org/10.52842/conf.caadria.2018.1.205
summary Joints and connectors are often the most complex element in building assemblies and systems. To ensure the performance of the assemblies and systems, it is critical to optimize the geometry and configurations of the joints based on key functional requirements (e.g., stiffness and thermal exchange). The proposed research focuses on developing a multi-objective topology optimization framework that can be utilized to design highly customized joints and connections for building applications. The optimized joints that often resemble tree structures or bones are fabricated using additive manufacturing techniques. This framework is built upon the integration of high-fidelity topology optimization algorithms, additive manufacturing, computer simulations and parametric design. Case studies and numerical applications are presented to demonstrate the validity and effectiveness of the proposed optimization and additive manufacturing framework. Optimal joint designs from a variety of architectural and structural design considerations, such as stiffness, thermal exchange, and vibration are discussed to provide an insightful interpretation of these interrelationships and their impact on joint performance.
keywords Topology optimization; parametric design; 3d printing
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2018_188
id ecaade2018_188
authors Coppens, Adrien, Mens, Tom and Gallas, Mohamed-Anis
year 2018
title Parametric Modelling Within Immersive Environments - Building a Bridge Between Existing Tools and Virtual Reality Headsets
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 711-716
doi https://doi.org/10.52842/conf.ecaade.2018.2.711
summary Even though architectural modelling radically evolved over the course of its history, the current integration of Augmented Reality (AR) and Virtual Reality (VR) components in the corresponding design tasks is mostly limited to enhancing visualisation. Little to none of these tools attempt to tackle the challenge of modelling within immersive environments, that calls for new input modalities in order to move away from the traditional mouse and keyboard combination. In fact, relying on 2D devices for 3D manipulations does not seem to be effective as it does not offer the same degrees of freedom. We therefore present a solution that brings VR modelling capabilities to Grasshopper, a popular parametric design tool. Together with its associated proof-of-concept application, our extension offers a glimpse at new perspectives in that field. By taking advantage of them, one can edit geometries with real-time feedback on the generated models, without ever leaving the virtual environment. The distinctive characteristics of VR applications provide a range of benefits without obstructing design activities. The designer can indeed experience the architectural models at full scale from a realistic point-of-view and truly feels immersed right next to them.
keywords Computer-aided Design; Parametric modelling; Virtual Reality; Architectural modelling; Human-Computer Interaction
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_296
id ecaade2018_296
authors Czyñska, Klara
year 2018
title High Precision Visibility and Dominance Analysis of Tall Building in Cityscape - On a basis of Digital Surface Model
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 481-488
doi https://doi.org/10.52842/conf.ecaade.2018.1.481
summary The article presents a methodology applied for the assessment of the tall building visual impact on the city scape, using digital tools. The method has been used by the author in the planning practice in several cities in Poland. It enables to determine not only the visibility range of a planned tall building in the city spaces, but also the extent to which it dominates. Findings are presented in a map which reflects both parameters applicable to a given facility. Computation of findings is based on the model of a city consisting of a regular cloud of points (Digital Surface Model) of high quality and dedicated C++ software (developed in cooperation with author). The Visual Impact Size (VIS) method supports the process of conservation and landscaping, in particular in historical cities. It helps predicting spatial implications tall buildings may have. It may also be used for comprehensive development of a modern skyline with tall buildings as a harmonious component of the cityscape. The method is presented using the case study of the Hanza Tower building in Szczecin (Poland).
keywords digital cityscape analysis; tall buildings; visual impact; Visual Impact Size method; viewshed; Hanza Tower in Szczecin
series eCAADe
email
last changed 2022/06/07 07:56

_id sigradi2018_1571
id sigradi2018_1571
authors de Mello Monteiro, Verner Max Liger; Alves Bezerra, José Rauryson; Paulino do Nascimento, Paulo Roberto; Ramalho dos Santos Júnior, Erisvaldo
year 2018
title Mathematizing Niemeyer’s architecture through parametric modeling: evaluating the parables of the Pampulha Church
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 294-299
summary This paper describes the mathematization process behind the parables of the Pampulha Church, one of the most iconic buildings designed by Oscar Niemeyer, in order to check how applicable was the use of analytic geometry in his architecture. To reach this, we factored the second degree equations presented on the building based on the parable height and width, then using parametric modeling to translate the formula into shape. As a result, the study intended to demonstrate how equations can be integrated into architecture, identifying how conic curves are being applied to the architectural geometry.
keywords Parametric modeling; Pampulha church; Oscar Niemeyer; Analytic geometry
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_295
id ecaade2018_295
authors Dezen-Kempter, Eloisa, Cogima, Camila Kimi, Vieira de Paiva, Pedro Victor and Garcia de Carvalho, Marco Antonio
year 2018
title BIM for Heritage Documentation - An ontology-based approach
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 213-222
doi https://doi.org/10.52842/conf.ecaade.2018.1.213
summary In the recent decades, the high-resolution remote sensing, through 3D laser scanning and photogrammetry benefited historic buildings maintenance, conservation, and restoration works. However, the dense surface models (DSM) generated from the data capture have nonstructured features as lack of topology and semantic discretization. The process to create a semantically oriented 3D model from the DSM, using the of Building Information Model technology, is a possibility to integrate historical information about the life cycle of the building to maintain and improving architectural valued building stock to its functional level and safeguarding its outstanding historical value. Our approach relies on an ontology-based system to represent the knowledge related to the building. Our work outlines a model-driven approach based on the hybrid data acquisition, its post-processing, the identification of the building' main features for the parametric modeling, and the development of an ontological map integrated with the BIM model. The methodology proposed was applied to a large-scale industrial historical building, located in Brazil. The DSM were compared, providing a qualitative assessment of the proposed method.
keywords Reality-based Surveying; Ontology-based System; BIM; Built heritage management
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2018_344
id ecaade2018_344
authors El-Gewely, Noor, Wong, Christopher, Tayefi, Lili, Markopoulou, Areti, Chronis, Angelos and Dubor, Alexandre
year 2018
title Programming Material Intelligence Using Food Waste Deposition to Trigger Automatic Three-Dimensional Formation Response in Bioplastics
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 271-278
doi https://doi.org/10.52842/conf.ecaade.2018.2.271
summary Bioplastics are by their very nature parametric materials, programmable through the selection of constituent components and the ratios in which they appear, and as such present significant potential as architectural building materials for reasons beyond sustainability and biodegradability. This paper presents a system through which rigid three-dimensional doubly curved hyperbolic paraboloid shapes are automatically formed from two-dimensional sheet casts by harnessing the inherent flexibility and expressiveness of bioplastics. The system uses a gelatin-based bioplastic supplemented with granular organic matter from food waste in conjunction with a split-frame casting system that enables the self-formation of three-dimensional geometries by directing the force of the bioplastic's uniform contraction as it dries. By adjusting the food waste added to the bioplastic, its properties can be tuned according to formal and performative needs; here, dehydrated granulated orange peel and dehydrated spent espresso-ground coffee are used both to impart their inherent characteristics and also to influence the degree of curvature of the resulting bioplastic surfaces. Multi-material casts incorporating both orange peel bioplastic and coffee grounds bioplastic are shown to exert a greater influence over the degree of curvature than either bioplastic alone, and skeletonized panels are shown to exhibit the same behavior as their solid counterparts. Potential developments of the technology so as to gain greater control of the curvature performance, particularly in the direction of computer-controlled additive manufacturing, are considered, as is the potential of application in architectural scale.
keywords Bioplastics; Composites; Fabrication; Materials
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2018_133
id ecaade2018_133
authors Eloy, Sara, Ourique, Lázaro, Woessner, Uwe, Kieferle, Joachim and Schotte, Wolfgang
year 2018
title How Present am I - Three virtual reality facilities testing the fear of falling
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 717-726
doi https://doi.org/10.52842/conf.ecaade.2018.2.717
summary Virtual reality environments have long been used in studies related to architecture simulation. The main objective of this paper is to measure the sense of presence that different virtual reality devices provide to users so as to evaluate their effectiveness when used to simulate real environments and draw conclusions of people's behaviors when using them. The study also aims at investigating, in a quantitative way, the influence of architectural elements on the comfort of use of a built environment, namely considering the fear of falling reported by adults while using these architectural elements. Using a between-subjects design randomly distributed between two experimental conditions (safe and unsafe), a set of three studies were conducted in three different virtual reality environments using a 5-sided-CAVE, a Powerwall or a Head Mounted Display. The study shows that immersive virtual reality devices give users a higher sense of presence than semi-immersive ones. One of the conclusions of the study is that a higher sense of presence helps to enhance the building spaces perceived impacts on users (in this case the fear of falling).
keywords Virtual Reality; Presence; Fear of falling; CAVE; HMD; Powerwall
series eCAADe
email
last changed 2022/06/07 07:55

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id ecaade2018_165
id ecaade2018_165
authors Fisher-Gewirtzman, Dafna and Bruchim, Elad
year 2018
title Considering Variant Movement Velocities on the 3D Dynamic Visibility Analysis (DVA) - Simulating the perception of urban users: pedestrians, cyclists and car drivers.
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 569-576
doi https://doi.org/10.52842/conf.ecaade.2018.2.569
summary The objective of this research project is to simulate and evaluate the effect of movement velocity and cognitive abilities on the visual perception of three groups of urban users: pedestrians, cyclists and car drivers.The simulation and analysis is based on the 3D Dynamic Visual Analysis (DVA) (Fisher-Gewirtzman, 2017). This visibility analysis model was developed in the Rhinoceros and Grasshopper software environments and is based on the conceptual model presented in Fisher-Gewirtzman (2016): a 3D Line of Sight (LOS) visibility analysis, taking into account the integrated effect of the 3D geometry of the environment and the variant elements of the view (such as the sky, trees and vegetation, buildings and building types, roads, water etc.). In this paper, the current advancement of the existing model considers the visual perception of human users employing three types of movement in the urban environment--pedestrians, cyclists and drivers--is explored.We expect this research project to exemplify the contribution of such a quantification and evaluation model to evaluating existing urban structures, and for supporting future human perception-based urban design processes.
keywords visibility analysis and simulation; predicting perception of space; movement in the urban environment; pedestrians; cyclists; car drivers
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia18_336
id acadia18_336
authors Forren, James; Nicholas, Claire
year 2018
title Lap, Twist, Knot. Intentionality in digital-analogue making environments
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 336-341
doi https://doi.org/10.52842/conf.acadia.2018.336
summary This paper discusses a theoretical approach and method of making in computational design and construction. The project examines digital and analogue building practices through a social anthropological and STS lens to better understand the use of technology in complex making environments. We position this with respect to contemporary investigations of materials in architecture which use physical and virtual prototyping and collaborative building. Our investigation extends this work by parsing complex making through ethnographic analysis. In doing so we seek to recalibrate computational design methods which privilege rote execution of digital form. This inquiry challenges ideas of agency and intention as ‘enabled’ by new technologies or materials. Rather, we investigate the troubling (as well as extension) of explicit designer intentions by the tacit intentions of technologies. Our approach is a trans-disciplinary investigation synthesizing architectural making and ethnographic analysis. We draw on humanistic and social science theories which examine activities of human-technology exchange and architectural practices of algorithmic design and fabrication. We investigate experimental design processes through prototyping architectural components and assemblies. These activities are examined by collecting data on human-technology interactions through field notes, journals, sketches, and video recordings. Our goal is to foster (and acknowledge) more complex, socially constructed methods of design and fabrication. This work in progress, using a cement composite fabric, is a preliminary study for a larger project looking at complex making in coordination with public engagement.
keywords work in progress, illusory dichotomies, design theory & history, materials/adaptive systems, collaboration, hybrid practices
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id ecaaderis2018_104
id ecaaderis2018_104
authors Hollberg, Alexander, Hildebrand, Linda and Habert, Guillaume
year 2018
title Environmental design - Lessons learned from teaching LCA
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 65-74
keywords Architects largely define the environmental impact a building will cause throughout its life cycle. Especially decisions taken in early design stages have a great influence on the environmental performance. The integration of environmental assessment into the design process requires adequate tools and basic knowledge of the architects using them. This paper discusses both aspects by means of two case studies with students. In both case studies, the goal was to use Life Cycle Assessment (LCA) to optimize the environmental performance of the building in the design process. The results of the first case study proved the benefits of using LCA-based information for decision-making, but some issues of using the tool during the design process became evident. In the second case study an improved LCA-tool was employed that proved to be applicable by all students. Nevertheless, only one group used the feedback to optimize the building design in an iterative process as intended by the supervisors. This leads to the conclusion that the difficulty of environmental design shifted from a lack of adequate assessment tools to the question of the design approach.
series eCAADe
email
last changed 2018/05/29 14:33

_id caadria2018_130
id caadria2018_130
authors Ishizawa, Tsukasa, Xiao, Yahan and Ikeda, Yasushi
year 2018
title Analyzing BIM Protocols and Users Surveys in Japan - To Understand the Current Japanese BIM Environment, Through the Comparison with Different Countries
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 31-40
doi https://doi.org/10.52842/conf.caadria.2018.2.031
summary Japanese building and construction industry expect BIM for the rescue of forecasted workforce shortage due to the population aging. Although the use of BIM has been spreading over past years, the progress of BIM implementation in Japan is slow. This paper aims to identify the obstructive factor for industry's smooth transformation. First, the authors analyze Japenese BIM protocols, which includes BIM standards and guidelines, to understand the status of useful information publically available. Second, multiple BIM surveys which targeted Japanese architect and contractor firms are examined to overview the situation from practitioners' point of view. Finally, the discussion and conclusion are led to find the fundamental issue to expedite the extensive use of BIM in Japanese architecture, engineering, and construction field.
keywords Building Information Modeling; Japan; Standardization; Guideline; BIM implementation
series CAADRIA
email
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 14HOMELOGIN (you are user _anon_342028 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002