CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 628

_id ecaade2018_162
id ecaade2018_162
authors Alkadri, Miktha, Turrin, Michela and Sariyildiz, Sevil
year 2018
title Toward an Environmental Database - Exploring the material properties from the point cloud data of the existing environment
doi https://doi.org/10.52842/conf.ecaade.2018.2.263
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 263-270
summary The utilization of point cloud as a 3D laser scanning product has reached across multi-disciplines in terms of data processing, data visualization, and data analysis. This study particularly investigates further the use of typical attributes of raw point cloud data consisting of XYZ (position information), RGB (colour information) and I (intensity information). By exploring the optical and thermal properties of the given point cloud data, it aims at compensating the material and texture information that is usually remained behind by architects during the conceptual design stage. Calculation of the albedo, emissivity and the reflectance values from the existing context specifically direct the architects to predict the type of materials for the proposed design in order to keep the balance of the surrounding Urban Heat Island (UHI) effect. Therefore, architects can have a comprehensive analysis of the existing context to deal with the microclimate condition before a design decision phase.
keywords point cloud data; material characteristics; albedo; emissivity; reflectance value
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia18_72
id acadia18_72
authors Nagy, Danil; Stoddart, Jim; Villaggi, Lorenzo; Burger, Shane; Benjamin, David
year 2018
title Digital Dérive. Reconstructing urban environments based on human experience
doi https://doi.org/10.52842/conf.acadia.2018.072
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 72-81
summary This paper describes a novel method for reconstructing urban environments based on individual occupant experience. The method relies on a low-cost off-the-shelf 360-degree camera to capture video and audio data from a natural walk through the city. It then uses a custom workflow based on an open-source Structure from Motion (SfM) library to reconstruct a dense point cloud from images extracted from the 360-degree video. The point cloud and audio data are then represented within a virtual reality (VR) model, creating a multisensory environment that immerses the viewer into the subjective experience of the occupant.

This work questions the role of precision and fidelity in our experience and representation of a “real” physical environment. On the one hand, the resulting VR environment is less complete and has lower fidelity than digital environments created through traditional modeling and rendering workflows. On the other hand, because each point in the point cloud is literally sampled from the actual environment, the resulting model also captures more of the noise and imprecision that characterizes our world. The result is an uncanny immersive experience that is less precise than traditional digital environments, yet represents many more of the unique physical characteristics that define our urban experiences.

keywords full paper, urban design & analysis, representation + perception, interactive simulations, virtual reality
series ACADIA
type paper
email
last changed 2022/06/07 07:59

_id acadia18_176
id acadia18_176
authors Bidgoli, Ardavan; Veloso,Pedro
year 2018
title DeepCloud. The Application of a Data-driven, Generative Model in Design
doi https://doi.org/10.52842/conf.acadia.2018.176
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 176-185
summary Generative systems have a significant potential to synthesize innovative design alternatives. Still, most of the common systems that have been adopted in design require the designer to explicitly define the specifications of the procedures and in some cases the design space. In contrast, a generative system could potentially learn both aspects through processing a database of existing solutions without the supervision of the designer. To explore this possibility, we review recent advancements of generative models in machine learning and current applications of learning techniques in design. Then, we describe the development of a data-driven generative system titled DeepCloud. It combines an autoencoder architecture for point clouds with a web-based interface and analog input devices to provide an intuitive experience for data-driven generation of design alternatives. We delineate the implementation of two prototypes of DeepCloud, their contributions, and potentials for generative design.
keywords full paper, design tools software computing + gaming, ai & machine learning, generative design, autoencoders
series ACADIA
type paper
email
last changed 2022/06/07 07:52

_id sigradi2018_1580
id sigradi2018_1580
authors Bomfim de Araujo, Alana; Groetelaars , Natalie Johanna; Leão de Amorim, Arivaldo
year 2018
title Use of Dense Stereo Matching for Existing Building Documentation: Comparative Analysis of Tools
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 874-879
summary This paper presents a comparative study of Dense Stereo Matching (DSM) tools to generate point cloud from digital photogrammetric restitution. The capability of four different state-of-the-art software systems as Photoscan (Agisoft), 3DF Zephyr Free (3Dflow), Remake (Autodesk) and Recap 360 (Autodesk) is examined to document a historical object. The main aspects compared are: processing time, export file formats, file size, quality and density of point clouds obtained from tools standard parameters. From the literature review, the analysis and the experiments, it is possible to evaluate the potential of DSM technique for the existing building documentation.
keywords Dense Stereo Matching (DSM); Digital photogrammetry; DSM tools; Point cloud; Triangular irregular network (TIN)
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2018_1473
id sigradi2018_1473
authors Kimi Cogima, Camila; V. V. de Paiva, Pedro; Dezen-Kempter, Eloisa; G. De Carvalho, Marco Antonio
year 2018
title Digital scanning and BIM modeling for modern architecture preservation: the Oscar Niemeyer’s Church of Saint Francis of Assisi
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 457-462
summary The Building Information Modelling (BIM) technology enabled improvement in the design, construction and maintenance stages highly. In the field of existing buildings, including historical assets, this technology has not yet had the same impact. This paper presents a methodology to create an intelligent digital model for an outstanding building from modern architecture in Brazil using multiple reality-based technologies. The fusion of the different point cloud raw data generated a high-resolution Dense Surface Model (DSM), the base of an accurate and detailed parametric Model. This study demonstrated the potential of digital surveying, including low-cost sensors, and BIM for built heritage documentation.
keywords Reality-based surveying; Point cloud; As-is model; Building Information Modelling; Modern Heritage
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2018_217
id caadria2018_217
authors Zhang, Le-Min, Jeng, Tay-Sheng and Zhang, Ruo-Xi
year 2018
title Integration of Virtual Reality, 3-D Eye-Tracking, and Protocol Analysis for Re-Designing Street Space
doi https://doi.org/10.52842/conf.caadria.2018.1.431
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 431-440
summary The objective of this paper is to develop an eye-tracking technology combined with a virtual reality system for an experimental study of an historical street design. Using protocol analysis, a set of design objects, parameters, and subjects are randomly selected for evaluation of the virtual street space of an ancient city. 3-D point-cloud data of spatial behaviors are tracked and analyzed. It is concluded that people with different cultural backgrounds each have a considerably different perception of the street space's characteristics. The methodology described in this paper can be used for spatial design of urban space in the future.
keywords Virtual Reality; Eye-Tracking; Protocol Analysis; Street Space
series CAADRIA
email
last changed 2022/06/07 07:57

_id sigradi2018_1867
id sigradi2018_1867
authors Alawadhi, Mohammad; Yan, Wei
year 2018
title Geometry from 3D Photogrammetry for Building Energy Modeling
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 631-637
summary Building energy modeling requires skilled labor, and there is a need to make environmental assessments of buildings more efficient and accessible for architects. A building energy model is based on collecting data from the real, physical world and representing them as a digital model. Recent digital photogrammetry tools can reconstruct real-world geometry by transforming photographs into 3D models automatically. However, there is a lack of accessible workflows that utilize this technology for building energy modeling and simulations. This paper presents a novel methodology to generate a building energy model from a photogrammetry-based 3D model using available tools and computer algorithms.
keywords 3D scanning; Building energy modeling; Building energy simulation; Digital photogrammetry; Photo-to-BEM
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia18_366
id acadia18_366
authors Baseta, Efilena; Bollinger, Klaus
year 2018
title Construction System for Reversible Self-Formation of Grid Shells. Correspondence between physical and digital form
doi https://doi.org/10.52842/conf.acadia.2018.366
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 366-375
summary This paper presents a construction system which offers an efficient materialization method for double-curved gridshells. This results in an active-bending system of controlled deflections. The latter system embeds its construction manual into the geometry of its components. Thus it can be used as a self-formation process. The two presented gridshell structures are composed of geometry-induced, variable stiffness elements. The latter elements are able to form programmed shapes passively when gravitational loads are applied. Each element consists of two layers and a slip zone between them. The slip allows the element to be flexible when it is straight and increasingly stiffer while its curvature increases. The amplitude of the slip defines the final deformation of the element. As a result, non-uniform deformations can be obtained with uniform cross sections and loads. When the latter elements are used in grid configurations, self-formation of initially planar surfaces emerges. The presented system eliminates the need for electromechanical equipment since it relies on material properties and hierarchical geometrical configurations. Wood, as a flexible and strong material, has been used for the construction of the prototypes. The fabrication of the timber laths has been done via CNC industrial milling processes. The comparison between the initial digital design and the resulting geometry of the physical prototypes is reviewed in this paper. The aim is to inform the design and fabrication process with performance data extracted from the prototypes. Finally, the scalability of the system shows its potential for large-scale applications, such as transformable structures.
keywords full paper, material & adaptive systems, flexible structures, digital fabrication, self-formation
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id sigradi2023_375
id sigradi2023_375
authors Consalter Diniz, Maria Luisa, Polverini Boeing, Lais, dos Santos Carvalho, Wendel and Bertola Duarte, Rovenir
year 2023
title Natural Language Processing, Sentiment Analysis, and Urban Studies: A Systematic Review
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1761–1772
summary This paper discusses the potential of using data from social media and location data platforms to create cartographies that enhance our understanding of urban dynamics. Natural Language Processing (NLP) and sentiment analysis are highlighted as essential tools for comprehending and categorizing this data. The study conducted a systematic review of NLP and sentiment analysis applications in urban studies, covering 27 peer-reviewed journals and conference papers published between 2018 and 2023. The research classified applications into six categories: urban livability, governance and management, user and landscape perception, land use and zoning, public health, and transportation and mobility. Most studies primarily relied on data from social media platforms like Twitter and location data sources such as Google Maps and Trip Advisor. Challenges include dealing with irrelevant or misleading information in publicly available data and limited accuracy when analyzing sentiments of non-English-speaking populations.
keywords Natural language processing, Sentiment analysis, Urban studies, Digital cartographies, Systematic review.
series SIGraDi
email
last changed 2024/03/08 14:09

_id ecaade2018_255
id ecaade2018_255
authors Danesh, Foroozan, Baghi, Ali and Kalantari, Saleh
year 2018
title Programmable Paper Cutting - A Method to Digitally Fabricate Transformable, Complex Structural Geometry
doi https://doi.org/10.52842/conf.ecaade.2018.2.489
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 489-498
summary This paper presents a computational approach to generating architectural forms for large spanning structures based on a "paper-cutting" technique. Using this approach, a flat sheet is cut and scored in such a way that a small application of force prompts it to expand into a three-dimensional structure. Our computational system can be used to estimate optimal cutting patterns and to predict the resulting structural characteristics, thereby providing greater rigor to what has previously been an ad-hoc and experimental design approach. To develop the model, we analyzed paper-cutting techniques, extracted the relevant formative parameters, and created a simulation using finite element analysis. We then used a data-mining approach through 400 simulations and applied a regression analysis to create a prediction model. Given a small number of input variables from the designer, this model can rapidly and precisely predict the transformation volume of a paper-cutting pattern. Additional structural characteristics will be modelled in future work. The use of this tool makes paper-cut design approaches more practical by changing a non-systematic, labor-intensive design process into a more precise and efficient one.
keywords Paper-cut?; Transformable geometry; Design method; Model prediction; Data mining; Regression analysis
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2018_295
id ecaade2018_295
authors Dezen-Kempter, Eloisa, Cogima, Camila Kimi, Vieira de Paiva, Pedro Victor and Garcia de Carvalho, Marco Antonio
year 2018
title BIM for Heritage Documentation - An ontology-based approach
doi https://doi.org/10.52842/conf.ecaade.2018.1.213
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 213-222
summary In the recent decades, the high-resolution remote sensing, through 3D laser scanning and photogrammetry benefited historic buildings maintenance, conservation, and restoration works. However, the dense surface models (DSM) generated from the data capture have nonstructured features as lack of topology and semantic discretization. The process to create a semantically oriented 3D model from the DSM, using the of Building Information Model technology, is a possibility to integrate historical information about the life cycle of the building to maintain and improving architectural valued building stock to its functional level and safeguarding its outstanding historical value. Our approach relies on an ontology-based system to represent the knowledge related to the building. Our work outlines a model-driven approach based on the hybrid data acquisition, its post-processing, the identification of the building' main features for the parametric modeling, and the development of an ontological map integrated with the BIM model. The methodology proposed was applied to a large-scale industrial historical building, located in Brazil. The DSM were compared, providing a qualitative assessment of the proposed method.
keywords Reality-based Surveying; Ontology-based System; BIM; Built heritage management
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2018_210
id ecaade2018_210
authors Ezzat, Mohammed
year 2018
title A Computational Tool for Mapping the Users' Urban Cognition - A Framework and a Representation for the Evolutionary Optimization of the Fuzzy Binary Relation between the Urban Conceptions of "Us" and "Others"
doi https://doi.org/10.52842/conf.ecaade.2018.1.667
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 667-676
summary The paper proposes a computational tool for simulating the users' urban cognitive systems, or more specifically the long-term memory associated with the knowledge of urbanism and its related urban visual features. The tool builds on our comprehensive theory of Urbanism, which presents a monolithic, structured, comprehensive, professional conception of Urbanism based on which any relativistic users' urban conceptions could be predicted as a restructuring of the professional conception. These versatile relativistic conceptions would emerge based on a nurturing environment, which is a conception of the empirical/anthropological collected data of the intended users' reflections against their preferred constructed urban environments. Once the users' conceptions of Urbanism are formulated, which is the first phase of the simulation, the users' impressions against any examined urban constructs are attainable, which is the second phase of the simulation. The two phases, the framework, would be monolithically represented by a proposed novel cellular graph. The proposed computational tool is thought of as a robust technique for the computational incorporation of the users' urban identity, and some of its constituents could be considered as a needed common platform of communication for a successful Human-Computer interaction in the field of urban analysis/design.
keywords a comprehensive model of Urbanism; a default professional conception of Urbanism; the relativistic users' conceptions of Urbanism ; recognized extracted urban features ; the users' urban identity; A comprehensive theory for space syntax:
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2018_145
id ecaade2018_145
authors Fukuda, Tomohiro, Zhu, Yuehan and Yabuki, Nobuyoshi
year 2018
title Point Cloud Stream on Spatial Mixed Reality - Toward Telepresence in Architectural Field
doi https://doi.org/10.52842/conf.ecaade.2018.2.727
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 727-734
summary In remote meetings that involve the study of buildings and cities, sharing three-dimensional (3D) virtual spatial of buildings and cities is just as necessary as sharing the appearances and voices of meeting participants. Because of this, system development and pilot projects have attempted to share 3D virtual models via the internet in real-time but is still insufficient compared with face-to-face meeting. Therefore, this research explores the applicability of a spatial mixed reality (MR) system that displays point cloud streams to realize 3D remote meeting in architecture and urban fields. MR is a new technology that enables 3D presentations of various information, combining the physical and virtual worlds. One MR method is telepresence, which is expected to give people a way to communicate remotely as if face to face in a realistic way. We first developed a MR system named PcsMR (Point cloud stream on mixed reality) to display point cloud streams. The PcsMR system's operation consists of generating and transferring a point cloud stream and then rendering a point cloud stream using MR. The PcsMR acquired the point cloud stream in real-time using Kinect for Windows v2 and transferred it to Microsoft HoloLens, which uses optical see-through MR. Then we constructed two prototypes based on PcsMR and carried out pilot projects. Through observing the experiments, application possibilities for architecture and urban fields are found in meetings and communications that share real-time 3D objects and include the movement of remote participants and objects. The proposed method was evaluated feasible and effective.
keywords Telepresence; Mixed reality; Point cloud stream; Remote meeting; Real time
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2018_392
id ecaade2018_392
authors Gargaro, Silvia, Cigola, Michela, Gallozzi, Arturo and Fioravanti, Antonio
year 2018
title Cultural Heritage Knowledge Context - A model based on Collaborative Cultural approach
doi https://doi.org/10.52842/conf.ecaade.2018.2.205
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 205-214
summary Cultural Heritage is a wide concept. It's what remains of the past generations Cultural Heritage includes tangible culture (such as buildings, monuments, landscapes, books, works of art and artifacts), intangible culture (such as folklore, music, traditions, language and knowledge) and natural heritage (including culturally significant landscapes, and biodiversity). A good preservation, restauration and valorization of Cultural Heritage embraces tangible and intangible culture, actually not evaluated in an holistic way.Cultural Heritage is not only an historical memory of the past, but the mirror of an anthropological reality that characterizes our personal and collective identity within a cultural context. The question is: How can we take into account these thought categories? The model proposed would be an used methodology to analyze the model for data acquisition, processing, modeling and implementation of knowledge on culture and social context through ontologies. The purpose of the research is to analyze the relationship between Cultural Context and Cultural Heritage.The contribution proposes an original approach to Cultural Heritage based on a social and cultural approach, transforming the user as an actor for the acquisition of raw data and cultural knowledge, applying the model to the Archaeological Complex of Casinum, in South Latium.
keywords Cultural Heritage; Context Knowledge; Intangible Knowledge; Ontologies; Human Behavior Constraints
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2018_010
id caadria2018_010
authors Han, Lu and Cardoso Llach, Daniel
year 2018
title Ludi: A Concurrent Physical and Digital Modeling Environment
doi https://doi.org/10.52842/conf.caadria.2018.1.515
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 515-523
summary This paper explores the potential of a concurrent physical and digital modeling environment. We describe a prototype for a novel design modeling interface where users can take advantage of the affordances of both physical and digital modeling environments, and work back and forth between the two. Using Processing, along with the Kinect depth sensor, the system uses depth data read from a physical modeling space to produce an enhanced digital representation in real time. Users can design by moving and stacking wooden blocks in a physical space, which is represented (and enhanced) digitally as a "voxel space," which can in turn be edited digitally. The result is a proof-of-concept concurrent physical and digital modeling environment combining design affordances specific to each media: the physical space offers tactile and embodied forms of design inter-action, and the digital space offers parametric editing capabilities, along with the capacity to view the modeling space from different perspectives, and perform basic analyses on designs. Following a brief review of experimental computational and tangible interaction design interfaces, the paper discusses the system's implementation, its limitations, and future steps.
keywords Computational Design; Processing; Concurrent Modeling Environment; Tangible Interaction
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2018_w02
id ecaade2018_w02
authors Jabi, Wassim and Aish, Robert
year 2018
title Non-manifold Topology for Architectural and Engineering Modelling
doi https://doi.org/10.52842/conf.ecaade.2018.1.057
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 57-60
summary Non-manifold topology (NMT) allows the user to construct light-weight conceptual spatial architectural models which define the overall enclosure and the internal cellular division within that enclosure. The objective of this workshop is to give participants hands-on opportunities with a new software library that we have been developing under a research grant from the Leverhulme Trust. On the first day, the concepts of non-manifold topology will be introduced, including non-regular modelling operations. On the second day, we will introduce two plug-ins, which have been interfaced to our NMT tools: a) building energy simulation using OpenStudio and EnergyPlus and b) structural analysis software.
keywords Non-manifold topology; Visual data flow programming; Building performance simulation; Computational design
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2018_310
id ecaade2018_310
authors Jabi, Wassim, Aish, Robert, Lannon, Simon, Chatzivasileiadi, Aikaterini and Wardhana, Nicholas Mario
year 2018
title Topologic - A toolkit for spatial and topological modelling
doi https://doi.org/10.52842/conf.ecaade.2018.2.449
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 449-458
summary This paper describes non-manifold topology (NMT) as it relates to the field of architecture and presents Topologic, an open-source software modelling library enabling hierarchical and topological representations of architectural spaces, buildings and artefacts through NMT. Topologic is designed as a core library and additional plugins to visual data flow programming (VDFP) software. The software architecture and class hierarchy are explained and two domain-specific demonstrative tools (TopologicEnergy and TopologicStructure) are presented to illustrate how third-party software developers could use Topologic to build their own solutions. The paper concludes with a reflection on the benefits and limitations of NMT in the design and simulation workflows and outlines future work.
keywords Non-manifold topology; Visual data flow programming; Building performance simulation; Structural analysis; Computational design; Building information modelling
series eCAADe
email
last changed 2022/06/07 07:51

_id sigradi2018_1875
id sigradi2018_1875
authors Kalantari, Cruze-Garza; Banner, Pamela; Contreras-Vidal, Jose Luis
year 2018
title Computationally Analyzing Biometric Data and Virtual Response Testing in Evaluating Learning Performance of Educational Setting Through
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 390-396
summary Due to construction costs, the human effects of innovations in architectural design can be expensive to test. Post-occupancy studies provide valuable data about what did and did not work in the past, but they cannot provide direct feedback for new ideas that have not yet been attempted. This presents designers with something of a dilemma. How can we harness the best potential of new technology and design innovation, while avoiding costly and potentially harmful mistakes? The current research use virtual immersion and biometric data to provide a new form of extremely rigorous human-response testing prior to construction. The researchers’ hypothesis was that virtual test runs can help designers to identify potential problems and successes in their work prior to its being physically constructed. The pilot study aims to develop a digital pre-occupancy toolset to understand the impact of different interior design variables of learning environment (independent variables) on learning performance (dependent variable). This project provides a practical toolset to test the potential human impacts of architectural design innovations. The research responds to a growing call in the field for evidence-based design and for an inexpensive means of evaluating the potential human effects of new designs. Our research will address this challenge by developing a prototype mobile brain-body imaging interface that can be used in conjunction with virtual immersion.
keywords Signal Processing; Brain; EEG; Virtual Reality; Big Data; Learning Performance
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia18_118
id acadia18_118
authors Kalantari, Saleh; Contreras-Vidal, Jose Luis; Smith, Joshua Stanton; Cruz-Garza, Jesus; Banner, Pamela
year 2018
title Evaluating Educational Settings through Biometric Data and Virtual Response Testing
doi https://doi.org/10.52842/conf.acadia.2018.118
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 118-125
summary The physical design of the learning environment has been shown to contribute significantly to student performance and educational outcomes. However, the existing literature on this topic relies primarily on generalized observations rather than on rigorous empirical testing. Broad trends in environmental impacts have been noted, but there is a lack of detailed evidence about how specific design variables can affect learning performance. The goal of this study was to apply a new approach in examining classroom design innovations. We developed a protocol to evaluate the effectiveness of classroom designs by measuring the physical responses of study participants as they interacted with different designs using a virtual reality platform. Our hypothesis was that virtual “test runs” can help designers to identify potential problems and successes in their work prior to its being physically constructed. The results of our initial pilot study indicated that this approach could yield important results about human responses to classroom design, and that the virtual environment seemed to be a reliable testing substitute when compared against real classroom environments. In addition to leading toward practical conclusions about specific classroom design variables, this project provides a new kind of research method and toolset to test the potential human impacts of a wide variety of architectural innovations.
keywords work in progress, signal processing, eeg, virtual reality, big data, learning performance
series ACADIA
type paper
email
last changed 2022/06/07 07:52

_id ecaade2018_238
id ecaade2018_238
authors Moleta, Tane, Wang, Brandon and Schnabel, Marc Aurel
year 2018
title The Virtual Mirror - Cognitive Loads in VR and VR Visualisations
doi https://doi.org/10.52842/conf.ecaade.2018.2.815
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 815-822
summary This paper begins to look at how human data can be collected via Virtual, Augmented and Mixed Reality alongside Eye Tracking data for design Verification. This paper presents preliminary testing and results from participants to demonstrate a data pipeline methodology and data processing to begin to understand and verify the impact of certain design elements have on ones cognitive experience.All testing and aims have been focused on basic design elements and how they may effect the experience of pathfinding and navigating through a conceptual design within an architectural practice situation.
keywords Cognitive Loads; Virtual Reality; Eye Tracking; Design Verification
series eCAADe
email
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_103600 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002