CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 622

_id caadria2021_089
id caadria2021_089
authors Cristie, Verina, Ibrahim, Nazim and Joyce, Sam Conrad
year 2021
title Capturing and Evaluating Parametric Design Exploration in a Collaborative Environment - A study case of versioning for parametric design
doi https://doi.org/10.52842/conf.caadria.2021.2.131
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 131-140
summary Although parametric modelling and digital design tools have become ubiquitous in digital design, there is a limited understanding of how designers apply them in their design processes (Yu et al., 2014). This paper looks at the use of GHShot versioning tool developed by the authors (Cristie & Joyce, 2018; 2019) used to capture and track changes and progression of parametric models to understand early-stage design exploration and collaboration empirically. We introduce both development history graph-based metrics (macro-process) and parametric model and geometry change metric (micro-process) as frameworks to explore and understand the captured progression data. These metrics, applied to data collected from three cohorts of classroom collaborative design exercises, exhibited students' distinct modification patterns such as major and complex creation processes or minor parameter explorations. Finally, with the metrics' applicability as an objective language to describe the (collaborative) design process, we recommend using versioning for more data-driven insight into parametric design exploration processes.
keywords Design exploration; parametric design; history recording; version control; collaborative design
series CAADRIA
email
last changed 2022/06/07 07:56

_id ijac201816304
id ijac201816304
authors Miao, Yufan; Reinhard Koenig, Katja Knecht, Kateryna Konieva, Peter Buš and Mei-Chih Chang
year 2018
title Computational urban design prototyping: Interactive planning synthesis methods—a case study in Cape Town
source International Journal of Architectural Computing vol. 16 - no. 3, 212-226
summary This article is motivated by the fact that in Cape Town, South Africa, approximately 7.5 million people live in informal settlements and focuses on potential upgrading strategies for such sites. To this end, we developed a computational method for rapid urban design prototyping. The corresponding planning tool generates urban layouts including street network, blocks, parcels and buildings based on an urban designer’s specific requirements. It can be used to scale and replicate a developed urban planning concept to fit different sites. To facilitate the layout generation process computationally, we developed a new data structure to represent street networks, land parcellation, and the relationship between the two. We also introduced a nested parcellation strategy to reduce the number of irregular shapes generated due to algorithmic limitations. Network analysis methods are applied to control the distribution of buildings in the communities so that preferred neighborhood relationships can be considered in the design process. Finally, we demonstrate how to compare designs based on various urban analysis measures and discuss the limitations that arise when we apply our method in practice, especially when dealing with more complex urban design scenarios.
keywords Procedural modeling, spatial synthesis, generative design, urban planning
series journal
email
last changed 2019/08/07 14:03

_id ijac201816305
id ijac201816305
authors Patt, Trevor Ryan
year 2018
title Multiagent approach to temporal and punctual urban redevelopment in dynamic, informal contexts
source International Journal of Architectural Computing vol. 16 - no. 3, 199-211
summary This article presents design research speculating on computationally enabled planning approaches for urban sites where informal developments make conventional masterplans ineffectual. The project advances the thesis that the spatial complexity of urban sites can be effectively studied through a network or mesh representation and that rapid change in informal settlements is not an obstacle to planned redevelopment but can be addressed through dynamic modeling and punctual interventions. In this way, the rapid turnover of the built environment can be a mechanism through which to introduce directed planning without canceling out bottom-up actions. In the case study presented, we use a multiagent approach that is able to adapt to a continuously changing context. The agents are driven by weighted random walks and compute localized analyses of the morphology of the network of public space as they move. The information generated by the multiagent simulation is aggregated to identify potential modifications to the urban fabric, with an emphasis on pedestrian connectivity.
keywords Adaptive planning, multiagent systems, urban morphology, network analysis, spectral clustering, informal urbanism, generative design, participatory frameworks
series journal
email
last changed 2019/08/07 14:03

_id ecaade2018_385
id ecaade2018_385
authors Schulz, Daniel, Reiter, Felix, Metche, Alexander and Werner, Liss C.
year 2018
title Data Flow - a GIS based interactive planning tool for educational facilities
doi https://doi.org/10.52842/conf.ecaade.2018.1.497
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 497-506
summary This paper describes the development of a Grasshopper-based planning support tool for urban planning. The tool aims at the analysis of demand in educational facilities and the optimization of their location and capacities. It was developed for the use case of Berlin using only publicly available resources and data sets. Through preprocessed GIS- and statistical data plus an easy-access interface, the tool encourages people from different backgrounds and even those with no professional knowledge in planning, to engage in urban decision making. Although being initially aimed at contributing to a moderated participation process, the tool's simple GUI (graphical user interface) and open source backend, make it usable in any setup - without a briefed advisor or the need for later professional evaluation by another party.
keywords urban planning; data visualization; gamification; education; GIS
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2018_138
id ecaade2018_138
authors Abdulmawla, Abdulmalik, Schneider, Sven, Bielik, Martin and Koenig, Reinhard
year 2018
title Integrated Data Analysis for Parametric Design Environment - mineR: a Grasshopper plugin based on R
doi https://doi.org/10.52842/conf.ecaade.2018.2.319
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 319-326
summary In this paper we introduce mineR- a tool that integrates statistical data analysis inside the parametric design environment Grasshopper. We first discuss how the integration of statistical data analysis would improve the parametric modelling workflow. Then we present the statistical programming language R. Thereafter, we show how mineR is built to facilitate the use of R in the context of parametric modelling. Using two example cases, we demonstrate the potential of implementing mineR in the context of urban design and analysis. Finally, we discuss the results and possible further developments.
keywords Statistical Data Analysis; Parametric Design
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2018_1619
id sigradi2018_1619
authors Agirbas, Asli
year 2018
title Creating Non-standard Spaces via 3D Modeling and Simulation: A Case Study
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1051-1058
summary Especially in the film industry, architectural spaces away from Euclidean geometry are brought to foreground. The best environment in which such spaces can be designed, is undoubtedly the 3D modeling environment. In this study, an experimental study was carried out on the creation of alternative spaces with undergraduate architectural students. Via using 3D modeling and various simulation techniques in the Maya software, students created spaces, which were away from the traditional architectural spaces. Thus, in addition to learning the 3D modeling software, architectural students learned to use animation and simulation as a part of design, not just as a presentation tool, and opening up new horizons for non-standard spaces was provided.
keywords 3D Modeling; Simulation; Animation; CAAD; Maya; Non-standard spaces
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_232
id ecaade2018_232
authors Al Bondakji, Louna, Chatzi, Anna-Maria, Heidari Tabar, Minoo, Wesseler, Lisa-Marie and Werner, Liss C.
year 2018
title VR-visualization of High-dimensional Urban Data
doi https://doi.org/10.52842/conf.ecaade.2018.2.773
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 773-780
summary The project aims to investigate the possibility of VR in a combination of visualizing high-dimensional urban data. Our study proposes a data-based tool for urban planners, architects, and researchers to 3D visualize and experience an urban quarter. Users have a possibility to choose a specific part of a city according to urban data input like "buildings, streets, and landscapes". This data-based tool is based on an algorithm to translate data from Shapefiles (.sh) in a form of a virtual cube model. The tool can be scaled and hence applied globally. The goal of the study is to improve understanding of the connection and analysis of high-dimensional urban data beyond a two-dimensional static graph or three-dimensional image. Professionals may find an optimized condition between urban data through abstract simulation. By implementing this tool in the early design process, researchers have an opportunity to develop a new vision for extending and optimizing urban materials.
keywords Abstract Urban Data Visualization; Virtual Reality; Geographical Information System
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_172
id ecaade2018_172
authors Al-Douri, Firas
year 2018
title The Employment of Digital Simulation in the Planning Departments in US Cities - How does it affect design and decision-making processes?
doi https://doi.org/10.52842/conf.ecaade.2018.2.539
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 539-548
summary The increased interactivity of digital simulation tools has offered a wide range of opportunities that may provoke a paradigmatic shift in urban design practice. Yet, research results did not provide any clear evidence that such shift seems to exist. Further studies are required to examine the methods and impact of their usage on decision-making and design outcome. To that goal, this research uses the single-case study design that has been pursued in three phases: literature review, online survey, and semi-structured interviews. The results have shown inadequacies, inconsistency, and ineffectiveness of usage of the tools that are most appropriate to the design activities of each phase and thus a limited impact on critical areas of the decision-making. The impact of the tools' usage is found to be correlated with not only the extent of their usage, but also with a variety of procedural and substantive factors such as the plan methodology, extent of tool's usage, choice of the appropriate tool, and planners' skills and capabilities in using those tools.
keywords Urban Simulation ; Urban Design Practice
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_219
id ecaade2018_219
authors Bai, Nan, Ye, Wenqia, Li, Jianan, Ding, Huichao, Pienaru, Meram-Irina and Bunschoten, Raoul
year 2018
title Customised Collaborative Urban Design - A Collective User-based Urban Information System through Gaming
doi https://doi.org/10.52842/conf.ecaade.2018.1.419
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 419-428
summary As we step into a new data-based information age, it is important to get citizens involved in the whole design process. Our research tries to build up a user-based urban information system by collecting the data of neighborhood land use preference from all the residents through gaming. The result of each individual decision will be displayed in real time using Augmented Reality technology, while the collective decision dataset will be stored, analyzed and learnt by computer, forming an optimal layout that meets the highest demand of the community. A pre-experiment has been conducted in a. an abstract virtual site and b. an existing site by collecting opinions from 122 participants, which shows that the system works well as a new method for collaborative design. This system has the potential to be applied both in realistic planning processes, as a negotiation toolkit, and in virtual urban forming, in the case of computer games or space colonization.
keywords Collaborative Design; Customization; Urban Design; Gaming; Information System
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_164
id ecaade2018_164
authors Chang, Mei-Chih, Buš, Peter, Tartar, Ayça, Chirkin, Artem and Schmitt, Gerhard
year 2018
title Big-Data Informed Citizen Participatory Urban Identity Design
doi https://doi.org/10.52842/conf.ecaade.2018.2.669
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 669-678
summary The identity of an urban environment is important because it contributes to self-identity, a sense of community, and a sense of place. However, under present-day conditions, the identities of expanding cities are rapidly deteriorating and vanishing, especially in the case of Asian cities. Therefore, cities need to build their urban identity, which includes the past and points to the future. At the same time, cities need to add new features to improve their livability, sustainability, and resilience. In this paper, using data mining technologies for various types of geo-referenced big data and combine them with the space syntax analysis for observing and learning about the socioeconomic behavior and the quality of space. The observed and learned features are identified as the urban identity. The numeric features obtained from data mining are transformed into catalogued levels for designers to understand, which will allow them to propose proper designs that will complement or improve the local traditional features. A workshop in Taiwan, which focuses on a traditional area, demonstrates the result of the proposed methodology and how to transform a traditional area into a livable area. At the same time, we introduce a website platform, Quick Urban Analysis Kit (qua-kit), as a tool for citizens to participate in designs. After the workshop, citizens can view, comment, and vote on different design proposals to provide city authorities and stakeholders with their ideas in a more convenient and responsive way. Therefore, the citizens may deliver their opinions, knowledge, and suggestions for improvements to the investigated neighborhood from their own design perspective.
keywords Urban identity; unsupervised machine learning; Principal Component Analysis (PCA); citizen participated design; space syntax
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_255
id ecaade2018_255
authors Danesh, Foroozan, Baghi, Ali and Kalantari, Saleh
year 2018
title Programmable Paper Cutting - A Method to Digitally Fabricate Transformable, Complex Structural Geometry
doi https://doi.org/10.52842/conf.ecaade.2018.2.489
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 489-498
summary This paper presents a computational approach to generating architectural forms for large spanning structures based on a "paper-cutting" technique. Using this approach, a flat sheet is cut and scored in such a way that a small application of force prompts it to expand into a three-dimensional structure. Our computational system can be used to estimate optimal cutting patterns and to predict the resulting structural characteristics, thereby providing greater rigor to what has previously been an ad-hoc and experimental design approach. To develop the model, we analyzed paper-cutting techniques, extracted the relevant formative parameters, and created a simulation using finite element analysis. We then used a data-mining approach through 400 simulations and applied a regression analysis to create a prediction model. Given a small number of input variables from the designer, this model can rapidly and precisely predict the transformation volume of a paper-cutting pattern. Additional structural characteristics will be modelled in future work. The use of this tool makes paper-cut design approaches more practical by changing a non-systematic, labor-intensive design process into a more precise and efficient one.
keywords Paper-cut?; Transformable geometry; Design method; Model prediction; Data mining; Regression analysis
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2018_329
id ecaade2018_329
authors De Luca, Francesco, Nejur, Andrei and Dogan, Timur
year 2018
title Facade-Floor-Cluster - Methodology for Determining Optimal Building Clusters for Solar Access and Floor Plan Layout in Urban Environments
doi https://doi.org/10.52842/conf.ecaade.2018.2.585
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 585-594
summary Daylight standards are one of the main factors for the shape and image of cities. With urbanization and ongoing densification of cities, new planning regulations are emerging in order to manage access to sun light. In Estonia a daylight standard defines the rights of light for existing buildings and the direct solar access requirement for new premises. The solar envelope method and environmental simulations to compute direct sun light hours on building façades can be used to design buildings that respect both daylight requirements. However, no existing tool integrates both methods in an easy to use manner. Further, the assessment of façade performance needs to be related to the design of interior layouts and of building clusters to be meaningful to architects. Hence, the present work presents a computational design workflow for the evaluation and optimisation of high density building clusters in urban environments in relation to direct solar access requirements and selected types of floor plans.
keywords Performance-driven Design; Urban Design; Direct Solar Access; Environmental Simulations and Evaluations; Parametric Modelling
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2018_210
id ecaade2018_210
authors Ezzat, Mohammed
year 2018
title A Computational Tool for Mapping the Users' Urban Cognition - A Framework and a Representation for the Evolutionary Optimization of the Fuzzy Binary Relation between the Urban Conceptions of "Us" and "Others"
doi https://doi.org/10.52842/conf.ecaade.2018.1.667
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 667-676
summary The paper proposes a computational tool for simulating the users' urban cognitive systems, or more specifically the long-term memory associated with the knowledge of urbanism and its related urban visual features. The tool builds on our comprehensive theory of Urbanism, which presents a monolithic, structured, comprehensive, professional conception of Urbanism based on which any relativistic users' urban conceptions could be predicted as a restructuring of the professional conception. These versatile relativistic conceptions would emerge based on a nurturing environment, which is a conception of the empirical/anthropological collected data of the intended users' reflections against their preferred constructed urban environments. Once the users' conceptions of Urbanism are formulated, which is the first phase of the simulation, the users' impressions against any examined urban constructs are attainable, which is the second phase of the simulation. The two phases, the framework, would be monolithically represented by a proposed novel cellular graph. The proposed computational tool is thought of as a robust technique for the computational incorporation of the users' urban identity, and some of its constituents could be considered as a needed common platform of communication for a successful Human-Computer interaction in the field of urban analysis/design.
keywords a comprehensive model of Urbanism; a default professional conception of Urbanism; the relativistic users' conceptions of Urbanism ; recognized extracted urban features ; the users' urban identity; A comprehensive theory for space syntax:
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2018_123
id ecaade2018_123
authors Loos, Lennert and De Laet, Lars
year 2018
title A Structurally Informed Design Process by Real-time Data Visualisations
doi https://doi.org/10.52842/conf.ecaade.2018.1.687
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 687-696
summary This paper will discuss data visualisation in structural engineering for comparing design alternatives. By having the structural information of all different design proposals at hand, the designer is able to make informed design decisions. The authors developed a tool for creating interactive graphs while designing structures in a parametric design environment. In this work a case study of different structural design alternatives of a stadium roof is presented. Based on this design case, some graphs and the new informed design approach will be explained. Also the implementation of the tool within a parametric design environment with its advantages and issues is discussed.
keywords Data visualisation; Computer-aided design; Decision making; Structural design
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia18_56
id acadia18_56
authors Suzuki, Seiichi; Knippers, Jan
year 2018
title Digital Vernacular Design. Form-finding at the edge of realities
doi https://doi.org/10.52842/conf.acadia.2018.056
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 56-65
summary Introducing design innovation within structural systems normally requires the development of novel design strategies for exploring different solutions in which optimized shapes can be derived from material behaviors and force principles. This condition is particularly important for bending- and form-active structures where intricate geometrical arrangements can be produced by combining simple discrete components. The use of real-time physics-based simulations as design tools has rapidly become popular for addressing these problems. However, all numerical methods tend to lack the interactive and playful characteristics that are intrinsic in traditional analogue methods. Because of this, the intuitive and creative characteristics of digital design processes are limited, and therefore a gap between analogue and digital design practices is progressively created.

In this paper, we present a design approach we call "digital vernacular," which involves the combination of interactive and playful characteristics of empirical and experimental methods within numerical models. This approach originates from the technical framework of topology-driven form-finding, which addresses the activation of topologic spaces during real-time physics-based simulations. The presented study is placed within a larger body of research regarding simulation-based design and aims to bridge the gap between analogue and digital design practices. Two computational frameworks based on particle-based methods and a set of research projects are presented to illustrate our design approach.

keywords work in progress, design methods and information processing, form finding, physics, representation
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id caadria2018_332
id caadria2018_332
authors van Ameijde, Jeroen and Song, Yutao
year 2018
title Data-Driven Urban Porosity - Incorporating Parameters of Public Space into a Generative Urban Design Process
doi https://doi.org/10.52842/conf.caadria.2018.1.173
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 173-182
summary This paper presents an urban design project for a new city district, using generative design processes in architecture and urbanism developed over several years within academic research and practice work. The paper discusses the opportunities and challenges found when using a data-driven urban design methodology in relation to the complex logistical, social and economical networks of new urban centers.
keywords Design Methods and Information Processing; Generative System; Simulation & Optimization; Urban Planning and Design; Public Space Design
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2018_279
id ecaade2018_279
authors Wortmann, Thomas, Akbar, Zuardin and Schroepfer, Thomas
year 2018
title Surveying Fitness Landscapes with Performance Explorer - Supporting the Design of a Better Tomorrow with Interactive Visualizations
doi https://doi.org/10.52842/conf.ecaade.2018.1.621
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 621-630
summary Increasing applications of parametric design and performance simulations by architectural designers present opportunities to design more resource- and energy-efficient buildings via simulation-based optimization. But Architectural Design Optimization (ADO) is less widespread that one might expect, due to, among other challenges, the problematic integration of optimization with architectural design. This problematic integration stems from a contrast between "wicked" or "co-evolving" architectural design problems and optimization problems. To mitigate the contrast between architectural and optimization problems, this paper presents Performance Explorer, an interactive, visual tool for performance-informed design space exploration (DSE). Performance-informed DSE emphasizes selection, refinement, and understanding over finding highest-performing design candidates. Performance Explorer allows interactive DSE via a visualization of a fitness landscape, with real-time feedback provided with a surrogate model. Performance Explorer is evaluated through a user test with thirty participants and emerges as more supportive and enjoyable to use than manual search and/or optimization.
keywords Architectural Design Optimization; Performance-informed Design; Interactive Visualization; Design Tool
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2018_162
id ecaade2018_162
authors Alkadri, Miktha, Turrin, Michela and Sariyildiz, Sevil
year 2018
title Toward an Environmental Database - Exploring the material properties from the point cloud data of the existing environment
doi https://doi.org/10.52842/conf.ecaade.2018.2.263
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 263-270
summary The utilization of point cloud as a 3D laser scanning product has reached across multi-disciplines in terms of data processing, data visualization, and data analysis. This study particularly investigates further the use of typical attributes of raw point cloud data consisting of XYZ (position information), RGB (colour information) and I (intensity information). By exploring the optical and thermal properties of the given point cloud data, it aims at compensating the material and texture information that is usually remained behind by architects during the conceptual design stage. Calculation of the albedo, emissivity and the reflectance values from the existing context specifically direct the architects to predict the type of materials for the proposed design in order to keep the balance of the surrounding Urban Heat Island (UHI) effect. Therefore, architects can have a comprehensive analysis of the existing context to deal with the microclimate condition before a design decision phase.
keywords point cloud data; material characteristics; albedo; emissivity; reflectance value
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaaderis2018_107
id ecaaderis2018_107
authors Ardavani, Olympia, Zerefos, Stelios and Doulos, Lambros
year 2018
title Predicting the effect of bio-luminescent plants for reducing energy consumption in urban environments
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 59-64
keywords The present paper is part of an ongoing research that deals with the inclusion of the effect of bio-luminescence as a substitute or complimentary light source in urban environments, with the main scope of reducing energy consumption for lighting in exterior areas. The paper discusses the selection of genetically modified transgenic plants for use in the climate of Greece and through bibliographic reference and preliminary experiments the modeling of a simulated light source that has the bio-luminescent properties of a specific plant. The modeled light source can then be used in lighting simulation software. Results, through the lighting simulation of the modeled transgenic plant in a case study scenario, support the fact that bio-luminescent plants can be used as supporting lighting agents in a suburban setting and eventually reduce energy consumption for lighting.
series eCAADe
email
last changed 2018/05/29 14:33

_id ecaade2018_309
id ecaade2018_309
authors Aºut, Serdar, Eigenraam, Peter and Christidi, Nikoletta
year 2018
title Re-flex: Responsive Flexible Mold for Computer Aided Intuitive Design and Materialization
doi https://doi.org/10.52842/conf.ecaade.2018.1.717
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 717-726
summary The paper presents an ongoing research about the design and a possible use of a responsive flexible mold. The mold is developed by integrating its precedents with automation and Human-Computer Interaction (HCI). The objective of the design is to provide an immersive design tool which has direct link to fabrication. It allows intuitive interaction to its user in order to help with the design and production of complex forms by supporting the designer's implicit skills with computer. The paper presents the design by illustrating the use of the hardware such as the actuators, the sensor and the projector; and by defining the workflow within the software. The paper concludes with the description of a possible use case in which the system is used to design and materialize an object in different scales.
keywords Design tools development; Digital fabrication and robotics; Human-computer interaction in design; Shape, form and geometry; Inventive Making
series eCAADe
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_236065 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002