CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 623

_id acadia18_226
id acadia18_226
authors Glynn, Ruairi; Abramovic, Vasilija; Overvelde, Johannes T. B.
year 2018
title Edge of Chaos. Towards intelligent architecture through distributed control systems based on Cellular Automata.
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 226-231
doi https://doi.org/10.52842/conf.acadia.2018.226
summary From the “Edge of Chaos”, a mathematical space discovered by computer scientist Christopher Langton (1997), compelling behaviors originate that exhibit both degrees of organization and instability creating a continuous dance between order and chaos. This paper presents a project intended to make this complex theory tangible through an interactive installation based on metamaterial research which demonstrates emergent behavior using Cellular Automata (CA) techniques, illustrated through sound, light and motion. We present a multi-sensory narrative approach that encourages playful exploration and contemplation on perhaps the biggest questions of how life could emerge from the disorder of the universe.

We argue a way of creating intelligent architecture, not through classical Artificial Intelligence (AI), but rather through Artificial Life (ALife), embracing the aesthetic emergent possibilities that can spontaneously arise from this approach. In order to make these ideas of emergent life more tangible we present this paper in four integrated parts, namely: narrative, material, hardware and computation. The Edge of Chaos installation is an explicit realization of creating emergent systems and translating them into an architectural design. Our results demonstrate the effectiveness of a custom CA for maximizing aesthetic impact while minimizing the live time of architectural kinetic elements.

keywords work in progress, complexity, responsive architecture, distributed computing, emergence, installation, interactive architecture, cellular automata
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id ijac201816403
id ijac201816403
authors Pantazis, Evangelos and David Gerber
year 2018
title A framework for generating and evaluating façade designs using a multi-agent system approach
source International Journal of Architectural Computing vol. 16 - no. 4, 248-270
summary Digital design paradigms in architecture have been rooted in representational models which are geometry centered and therefore fail to capture building complexity holistically. Due to a lack of computational design methodologies, existing digital design workflows do little in predicting design performance in the early design stage and in most cases analysis and design optimization are done after a design is fixed. This work proposes a new computational design methodology, intended for use in the area of conceptual design of building design. The proposed methodology is implemented into a multi-agent system design toolkit which facilitates the generation of design alternatives using stochastic algorithms and their evaluation using multiple environmental performance metrics. The method allows the user to probabilistically explore the solution space by modeling the design parameters’ architectural design components (i.e. façade panel) into modular programming blocks (agents) which interact in a bottom-up fashion. Different problem requirements (i.e. level of daylight inside a space, openings) described into agents’ behavior allow for the coupling of data from different engineering fields (environmental design, structural design) into the a priori formation of architectural geometry. In the presented design experiment, a façade panel is modeled into an agent-based fashion and the multi-agent system toolkit is used to generate and evolve alternative façade panel configurations based on environmental parameters (daylight, energy consumption). The designer can develop the façade panel geometry, design behaviors, and performance criteria to evaluate the design alternatives. The toolkit relies on modular and functionally specific programming modules (agents), which provide a platform for façade design exploration by combining existing three-dimensional modeling and analysis software.
keywords Generative design, multi-agent systems, façade design, agent-based modeling, stochastic search
series journal
email
last changed 2019/08/07 14:04

_id caadria2018_337
id caadria2018_337
authors Tang, Ming
year 2018
title From Agent to Avatar - Integrate Avatar and Agent Simulation in the Virtual Reality for Wayfinding
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 503-512
doi https://doi.org/10.52842/conf.caadria.2018.1.503
summary This paper describes a study of using immersive virtual reality (VR) technology to analyze user behavior related to wayfinding, and the integration of the technology with the multi-agent simulation and space syntax. Starting with a discussion on the problems of current agent-based simulation (ABS) and space syntax in constructing the micro-level interactions for wayfinding, the author focuses on how the cognitive behavior and spatial knowledge can be achieved with a player controlled avatar in response to other computer controlled agents in a virtual building. This approach starts with defining the proposed Avatar Agent VR system (AAVR), which is used for capturing a player's movement in real time and form the spatial data, then visualizing the data with various representation methods. Combined with space syntax and ABS, AAVR is used to examine various players' wayfinding behaviors related to gender, spatial recognition, and spatial features such as light, sound, material, and other architectural elements.
keywords Virtual Reality; wayfinding simulation; agent; avatar; multi-agent simulation; space syntax
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2018_112
id ecaade2018_112
authors Yu, K. Daniel, Haeusler, M. Hank, Simon, Katrina and Fabbri, Alessandra
year 2018
title Data Influenced Infrastructure Generation - Combining holistic urban datasets through a digital Slime Mold algorithm for cycle path generation
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 647-656
doi https://doi.org/10.52842/conf.ecaade.2018.2.647
summary Existing infrastructure in cities has become increasingly incapable of operating at its designed efficiency. This demand has been created by the growth in population generating a larger demand and strain on the existing infrastructure. This paper explores how user-generated data could be utilised to create transport infrastructure, more specifically bicycle pathways. Through a series of 'four sprints', a pathway generation system has been adapted from the behaviour of Slime Molds (Physarum Polycephalum), in particular, its ability to define shortest paths on a terrain. The first sprint outlines the design of a Slime Mold algorithm between user-specified points, the second utilises the algorithm for pathway generation in a macro and micro urban scale (acknowledging both the existing infrastructure and cadastral), the third defines weight or effort limits for the pathways in order to suite realistic user-profiles (fitness level of cyclist groups), and the last sprint creates the start and end points for the pathway generation from user-generated data, applying the Slime Mold system to a 'real world' context. Through the four sprints, a design tool has been created that can be used to not only create and analyse cycle pathways, but tweaked for various other forms of tangible transport infrastructure.
keywords urban planning; agent based modelling; optimisation and decision support; transport planning
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2018_257
id ecaade2018_257
authors Guo, Zhe, Yin, Hao and Yuan, Philip F.
year 2018
title Spatial Redesign Method Based on Behavior Data Visualization System - UWB interior positioning technology based office space redesign method research
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 577-584
doi https://doi.org/10.52842/conf.ecaade.2018.2.577
summary There is a typical symbiotic relationship between behavior and space. Design and evaluation of space are also inseparable from people's behavioral needs. Therefore, the study of behavior patterns can be regarded as the process of exploring the relationship between human and space. Traditional behavioral research lacks precise micro-individual data and analytical tools to express complex environments, and is more inclined to macro and qualitative static analysis. With the maturity of indoor positioning technology, the use of big data as a medium to quantitatively study the laws of behavior has gradually penetrated into the micro-level of indoor space. This paper begins with a brief introduction of the behavioral performance research process in history. The paper then describes the method that constructs the observation, quantification and visualization process of behavior data by using UWB positioning technology and visualization implementation system through an on-site experiment of office space. The last part of this paper discusses the establishment of spatial redesign method by mining the behavior data, and translating the results into spatial attributes.
keywords behavior data visualization; UWB interior positioning technology; data mining; spatial redesign method
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2018_161
id caadria2018_161
authors Huang, Xiaoran, White, Marcus and Burry, Mark
year 2018
title Design Globally, Immerse Locally - A Synthetic Design Approach by Integrating Agent Based Modelling with Virtual Reality
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 473-482
doi https://doi.org/10.52842/conf.caadria.2018.1.473
summary The last three decades have witnessed the explosion of technology and its impact on the architecture discipline which has drastically changed the methods of design. New techniques such as Agent-based modeling (ABM) and Virtual Reality (VR) have been widely implemented in architectural and urban design domains, yet the potential integration between these two methods remains arguably unexploited. The investigation in this paper aims to probe the following questions: How can architects and urban designers be informed more comprehensively by melding ABM and VR techniques at the preliminary/conceptual design stage? Which platform is considered more appropriate to facilitate a user-friendly system and reduces the steep learning curve? And what are the potential benefits of this approach in architectural education, particularly for the design studio environment? With those questions, we proposed a prototype in Unity, a multi-platform development tool that originated from the game industry, to simulate and visualize pedestrian behaviors in urban environments with immersive design experience and tested it in a scenario-based case study. This approach has also been further tested in an architectural design studio, demonstrating its technical feasibility as well as the potential contributions to the pedagogy.
keywords Agent based modelling; Virtual Reality; Urban Design
series CAADRIA
email
last changed 2022/06/07 07:49

_id ecaade2018_213
id ecaade2018_213
authors Lohse, Theresa, Fujii, Ryuta and Werner, Liss C.
year 2018
title Multi-Dimensional Interface Based Spatial Adaption - A Prototype For A Multi-Sensory User Interface Employing Elastic Materials
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 169-176
doi https://doi.org/10.52842/conf.ecaade.2018.2.169
summary Patten and Ishii (2000) discovered that people are employing more versatile strategies for spatial distribution when using a tangible user interface (TUI) as opposed to a graphics user interface (GUI) (Patten & Ishii, 2000). Besides, the generated information outputs of conventional two-dimensional interacting screens are currently almost entirely addressing the visual and acoustic senses but lacking in other sensory stimuli - such as haptic, body equilibrium and sense of gravity. With the experiment described here, the multi-dimensionality of both the input on the interface and the output of the human interaction will be challenged. This paper aims to introduce a method to a real world versatile three-dimensional interface actuating a simulated spatial environment that substantiates the more unconventional sensory perception mentioned above. A physical prototype using an Arduino will be assembled to test the feasibility of the structure.
keywords spatial formation; virtual reality; tangible user interface; body equilibrium; physical computing
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2018_273
id ecaade2018_273
authors Modzelewska, Agnieszka
year 2018
title A Smooth Introduction to BIM in Interior Design Studies - The reversed 'in steps' design procedure.
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 289-294
doi https://doi.org/10.52842/conf.ecaade.2018.1.289
summary This article presents a specific description and findings in teaching architectural computing using 3D modeling software at the undergraduate level of Interior Design Studies (second academic year). This paper is mainly concerned with the analysis of issues and advantages resulting from teaching design through the "modeling first" in the overall design practice. By "the reversed 'in steps' design procedure" we recognize the design process encompassing the idea of "form first".We introduce BIM based modeling to Interior Design students at the undergraduate level through "in steps" procedure, which is the opposite to typical CAD procedures. With 3D model based method, the beginning of the design process by making the abstract, conceptual designs, and later translating it into design solutions are made possible. The use of BIM technology not only gives architecture, engineering, and construction professions tools to more efficient collaboration but also provides inventors such as architects with complete and integrated tools for the entire design development.
keywords interior design; education; BIM; 3D modelling; visualization
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2018_057
id caadria2018_057
authors Nandavar, Anirudh, Petzold, Frank, Nassif, Jimmy and Schubert, Gerhard
year 2018
title Interactive Virtual Reality Tool for BIM Based on IFC - Development of OpenBIM and Game Engine Based Layout Planning Tool - A Novel Concept to Integrate BIM and VR with Bi-Directional Data Exchange
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 453-462
doi https://doi.org/10.52842/conf.caadria.2018.1.453
summary With recent advancements in VR (Virtual Reality) technology in the past year, it has emerged as a new paradigm in visualization and immersive HMI (Human-machine Interface). On the other hand, in the past decades, BIM (Building Information Modelling) has emerged as the new standard of implementing construction projects and is quickly becoming a norm than just a co-ordination tool in the AEC industry.Visualization of the digital data in BIM plays an important role as it is the primary communication medium to the project participants, where VR can offer a new dimension of experiencing BIM and improving the collaboration of various stakeholders of a project. There are both open source and commercial solutions to extend visualization of a BIM project in VR, but so far, there are no complete solutions that offer a pure IFC format based solution, which makes the VR integration vendor neutral. This work endeavors to develop a concept for a vendor-neutral BIM-VR integration with bi-directional data exchange in order to extend VR as a collaboration tool than a mere visualization tool in the BIM ecosystem.
keywords BIM; VR; IFC; Unity; BIM-VR integration; HMI
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2018_228
id caadria2018_228
authors Newton, David
year 2018
title Accommodating Change and Open-Ended Search in Design Optimization
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 175-184
doi https://doi.org/10.52842/conf.caadria.2018.2.175
summary Many real-world architectural multi-objective problems (MOPs) are dynamic and may have objectives, decision variables, and constraints that change during the optimization process. These problems are known as dynamic MOPs (DMOPs). Dynamic multi-objective evolutionary algorithms (DMOEAs) have emerged in the fields of optimization, operations research, and computer science as one way to address the challenges posed by DMOPs. DMOEAs offer new capacities for exploration and interaction with the designer, but they have not yet been studied in the field of architecture. This research addresses these issues through the development of a unique interactive DMOEA-based design tool for the conceptual design phase. We propose a new modification to the popular nondominated sorting genetic algorithm II (NSGA-II), that we call the dynamic progressive for architecture NSGA-II (DPA-NSGA-II). We show that DPA-NSGA-II outperforms NSGA-II in finding novel solutions.
keywords algorithmic design; multi-objective optimization; evolutionary computation; parametric design; generative design
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2022_278
id caadria2022_278
authors Ortner, F. Peter and Tay, Jing Zhi
year 2022
title Optimizing Design Circularity: Managing Complexity in Design for Circular Economy Through Single and Multi-Objective Optimisation
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 191-200
doi https://doi.org/10.52842/conf.caadria.2022.1.191
summary This paper advances the application of computational optimization to design for circular economy (CE) by comparing results of scalarized single-objective optimization (SOO) and multi-objective optimization (MOO) to a furniture design case study. A framework integrating both methods is put forward based on results of the case study. Existing design frameworks for CE emphasize optimization through an iterative process of manual assessment and redesign (Ellen MacArthur Foundation, 2015). Identifying good design solutions for CE, however, is a complex and time-consuming process. Most prominent CE design frameworks list at least nine objectives, several of which may conflict (Reike et al., 2018). Computational optimization responds to these challenges by automating search for best solutions and assisting the designer to identify and manage conflicting objectives. Given the many objectives outlined in circular design frameworks, computational optimisation would appear a priori to be an appropriate method. While results presented in this paper show that scalarized SOO is ultimately more time-efficient for evaluating CE design problems, we suggest that given the presence of conflicting circular design objectives, pareto-set visualization via MOO can initially better support designers to identify preferences.
keywords Design for Circular Economy, Computational Optimisation, Sustainability, Design Optimisation, SDG 11, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id ijac201816302
id ijac201816302
authors Schnabel, Marc Aurel and Blaire Haslop
year 2018
title Glitch architecture
source International Journal of Architectural Computing vol. 16 - no. 3, 183-198
summary Architectural designs are visualised on computer screens through arrays of pixels and vectors. These representations differ from the reality of buildings, which over time will unavoidably age and decay. How, then, do digital designs age over time? Do we interpret glitching as a sudden malfunction or fault in the computation of the design’s underlying data, or as digital decay resulting not from the wear and tear of tangible materials but from the decomposition of the binary code, or from system changes that cannot appropriately interpret the data? By exploring a series of experimental design practices for deployments and understandings that are the consequence of malfunctions during computational processing, glitches are reinterpreted. Advancing from two-dimensional glitch art techniques into three-dimensional interpretations, the research employs a methodology of systematic iterative processes to explore design emergence based on glitches. The study presents digital architectural form existing solely in the digital realm, as an architectural interpretation of computational glitches through both its design process and aesthetic outcome. Thus, this research intends to bring a level of authenticity to the field through three-dimensional interpretations of glitch in an architectural form.
keywords Digital decay, glitch, digital design methods, glitch-space, data interpretation
series journal
email
last changed 2019/08/07 14:03

_id ecaade2018_385
id ecaade2018_385
authors Schulz, Daniel, Reiter, Felix, Metche, Alexander and Werner, Liss C.
year 2018
title Data Flow - a GIS based interactive planning tool for educational facilities
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 497-506
doi https://doi.org/10.52842/conf.ecaade.2018.1.497
summary This paper describes the development of a Grasshopper-based planning support tool for urban planning. The tool aims at the analysis of demand in educational facilities and the optimization of their location and capacities. It was developed for the use case of Berlin using only publicly available resources and data sets. Through preprocessed GIS- and statistical data plus an easy-access interface, the tool encourages people from different backgrounds and even those with no professional knowledge in planning, to engage in urban decision making. Although being initially aimed at contributing to a moderated participation process, the tool's simple GUI (graphical user interface) and open source backend, make it usable in any setup - without a briefed advisor or the need for later professional evaluation by another party.
keywords urban planning; data visualization; gamification; education; GIS
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2018_167
id caadria2018_167
authors Sun, Chengyu, Zheng, Zhaohua, Wang, Yuze, Sun, Tongyu and Ruiz, Laura
year 2018
title A Topological-Rule-Based Algorithm Converting a Point Cloud into a Key-Feature Mesh
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 597-606
doi https://doi.org/10.52842/conf.caadria.2018.2.597
summary As a bridge between tangible models and digital counter parts in almost all the architectural applications with Tangible User Interface, converting point clouds scanned from objects into light meshes with key-features are essential in the human-computer interaction. In this paper, an algorithm based on topological rules is introduced, which focuses on computing a topological-right mesh from a point cloud scanned by a low-cost device in real time. Mesh faces are extracted by analyzing distribution of the normal vectors of neighbor point clusters and mesh vertexes are calculated according to the topological conditions of local surrounding faces. Such a final key-feature mesh has the largest geometric similarity and least vertexes to the tangible model at an architectural cognitive level, whose dimensional accuracy is at an acceptable level concerning the low-cost device used.
keywords Tangible model; Point cloud; Mesh simplification; Human Computer Interaction
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia18_82
id acadia18_82
authors Sun, Chengyu; Zheng, Zhaohua; Sun, Tongyu
year 2018
title Hybrid Fabrication. A free-form building process with high on-site flexibility and acceptable accumulative error
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 82-87
doi https://doi.org/10.52842/conf.acadia.2018.082
summary Although digital fabrication has a booming development in the building industry, especially in freeform building, its further application in onsite operations is still limited because of the huge flexibility required in programming. On the contrary, traditional manual fabrication onsite deals perfectly with problems that always accompany fatal accumulative errors in freeform building. This study explores a hybrid fabrication paradigm to take advantage of both in an onsite freeform building project, in which there is a cycling human–computer interactive process consisting of manual operation and computer guidance in real time. A Hololens-Kinect system in a framework of typical project camera systems is used in the demonstration. When human builders perceive, decide, and operate the irregular foam bricks in a complex onsite environment, the computer keeps updating the current form through 3D scanning and prompting the position and orientation of the next brick through augmented display. From a starting vault, the computer always fine tunes its control surface according to the gradually installed bricks and keeps following a catenary formula. Thus, the hybrid fabrication actually benefits from the flexibility based on human judgment and operation, and an acceptable level of accumulative error can be handled through computer guidance concerning the structural performance and formal accuracy.
keywords work in progress, vr/ar/mr, hybrid practices
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id ecaade2018_279
id ecaade2018_279
authors Wortmann, Thomas, Akbar, Zuardin and Schroepfer, Thomas
year 2018
title Surveying Fitness Landscapes with Performance Explorer - Supporting the Design of a Better Tomorrow with Interactive Visualizations
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 621-630
doi https://doi.org/10.52842/conf.ecaade.2018.1.621
summary Increasing applications of parametric design and performance simulations by architectural designers present opportunities to design more resource- and energy-efficient buildings via simulation-based optimization. But Architectural Design Optimization (ADO) is less widespread that one might expect, due to, among other challenges, the problematic integration of optimization with architectural design. This problematic integration stems from a contrast between "wicked" or "co-evolving" architectural design problems and optimization problems. To mitigate the contrast between architectural and optimization problems, this paper presents Performance Explorer, an interactive, visual tool for performance-informed design space exploration (DSE). Performance-informed DSE emphasizes selection, refinement, and understanding over finding highest-performing design candidates. Performance Explorer allows interactive DSE via a visualization of a fitness landscape, with real-time feedback provided with a surrogate model. Performance Explorer is evaluated through a user test with thirty participants and emerges as more supportive and enjoyable to use than manual search and/or optimization.
keywords Architectural Design Optimization; Performance-informed Design; Interactive Visualization; Design Tool
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2019_329
id caadria2019_329
authors Zhao, Yao, Zhu, Weiran and Yuan, Philip F.
year 2019
title From Acoustic Data Perception to Visualization Design
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 393-402
doi https://doi.org/10.52842/conf.caadria.2019.1.393
summary This research project is based on the research results from the "Acoustic Visualization Group" of Digital FUTURES Summer Workshop in Shanghai, 2018. In this workshop, students use sound data acquisition sound collection equipment to collect sound information in the space and transform it into digital data. After analyzing the data, they present it as a visible form and design the sound interaction device based on the results. This study combines the media art and digital technology to transform the invisible acoustics digital information into a tangibly visible experiencing space and to mix the virtual acoustics space, realistic light- and- shadow space and the three-dimension material space in multi-dimensions through the digital programming and generative art design. Acoustic visualization interaction design is a comprehensive attempt which mixed with several research fields such as architecture device design, digital media technology, human-computer interaction and architecture environment science.
keywords Acoustic Visualization; Digital FUTURES; Interaction Device
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia18_216
id acadia18_216
authors Ahrens, Chandler; Chamberlain, Roger; Mitchell, Scott; Barnstorff, Adam
year 2018
title Catoptric Surface
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 216-225
doi https://doi.org/10.52842/conf.acadia.2018.216
summary The Catoptric Surface research project explores methods of reflecting daylight through a building envelope to form an image-based pattern of light on the interior environment. This research investigates the generation of atmospheric effects from daylighting projected onto architectural surfaces within a built environment in an attempt to amplify or reduce spatial perception. The mapping of variable organizations of light onto existing or new surfaces creates a condition where the perception of space does not rely on form alone. This condition creates a visual effect of a formless atmosphere and affects the way people use the space. Often the desired quantity and quality of daylight varies due to factors such as physiological differences due to age or the types of tasks people perform (Lechner 2009). Yet the dominant mode of thought toward the use of daylighting tends to promote a homogeneous environment, in that the resulting lighting level is the same throughout a space. This research project questions the desire for uniform lighting levels in favor of variegated and heterogeneous conditions. The main objective of this research is the production of a unique facade system that is capable of dynamically redirecting daylight to key locations deep within a building. Mirrors in a vertical array are individually adjusted via stepper motors in order to reflect more or less intense daylight into the interior space according to sun position and an image-based map. The image-based approach provides a way to specifically target lighting conditions, atmospheric effects, and the perception of space.
keywords full paper, non-production robotics, representation + perception, performance + simulation, building technologies
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id ecaade2018_232
id ecaade2018_232
authors Al Bondakji, Louna, Chatzi, Anna-Maria, Heidari Tabar, Minoo, Wesseler, Lisa-Marie and Werner, Liss C.
year 2018
title VR-visualization of High-dimensional Urban Data
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 773-780
doi https://doi.org/10.52842/conf.ecaade.2018.2.773
summary The project aims to investigate the possibility of VR in a combination of visualizing high-dimensional urban data. Our study proposes a data-based tool for urban planners, architects, and researchers to 3D visualize and experience an urban quarter. Users have a possibility to choose a specific part of a city according to urban data input like "buildings, streets, and landscapes". This data-based tool is based on an algorithm to translate data from Shapefiles (.sh) in a form of a virtual cube model. The tool can be scaled and hence applied globally. The goal of the study is to improve understanding of the connection and analysis of high-dimensional urban data beyond a two-dimensional static graph or three-dimensional image. Professionals may find an optimized condition between urban data through abstract simulation. By implementing this tool in the early design process, researchers have an opportunity to develop a new vision for extending and optimizing urban materials.
keywords Abstract Urban Data Visualization; Virtual Reality; Geographical Information System
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_162
id ecaade2018_162
authors Alkadri, Miktha, Turrin, Michela and Sariyildiz, Sevil
year 2018
title Toward an Environmental Database - Exploring the material properties from the point cloud data of the existing environment
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 263-270
doi https://doi.org/10.52842/conf.ecaade.2018.2.263
summary The utilization of point cloud as a 3D laser scanning product has reached across multi-disciplines in terms of data processing, data visualization, and data analysis. This study particularly investigates further the use of typical attributes of raw point cloud data consisting of XYZ (position information), RGB (colour information) and I (intensity information). By exploring the optical and thermal properties of the given point cloud data, it aims at compensating the material and texture information that is usually remained behind by architects during the conceptual design stage. Calculation of the albedo, emissivity and the reflectance values from the existing context specifically direct the architects to predict the type of materials for the proposed design in order to keep the balance of the surrounding Urban Heat Island (UHI) effect. Therefore, architects can have a comprehensive analysis of the existing context to deal with the microclimate condition before a design decision phase.
keywords point cloud data; material characteristics; albedo; emissivity; reflectance value
series eCAADe
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_880027 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002