CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 628

_id ecaade2018_439
id ecaade2018_439
authors Jose, Duarte, Nazarian, Shadi and Ashrafi, Negar
year 2018
title Designing Shelters for 3D-printing - A studio experiment
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 31-38
doi https://doi.org/10.52842/conf.ecaade.2018.2.031
summary This paper describes an architectural design studio experiment, developed with the aim of exploring the interrelationship between the architectural design of basic shelters and additive manufacturing technology (aka 3D printing) using concrete. This fabrication technology has been developed over the past twenty years in various locations Worldwide and there has been some experiments on its use for making buildings. However, these experiments are still very limited in number and results, in the sense that do not fully explore the potential of the technology and its impact on the way we design and make buildings. The studio evolved in the context of a larger project in which a multidisciplinary team of researchers is developing the technology for the additive manufacturing in concrete. Research evolves along three main thrusts of work on materials, systems, and design. The studio introduced students to these various aspects, examined their interrelationships, impacts, and applications in architectural design and construction of buildings. The hope was to collect more information and feedback to inform the overarching research. Results showed the feasibility of the technology and identified issues that need to be addressed in future research.
keywords additive manufacturing; 3D printing; concrete; design education
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia18_312
id acadia18_312
authors Ariza, Inés; Mirjan, Ammar; Gandia, Augusto; Casas, Gonzalo; Cros, Samuel; Gramazio, Fabio; Kohler, Matthias.
year 2018
title In Place Detailing. Combining 3D printing and robotic assembly
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 312-321
doi https://doi.org/10.52842/conf.acadia.2018.312
summary This research presents a novel construction method that links robotic assembly and in place 3D printing. Rather than producing custom joints in a separate prefabrication process, our approach enables creating highly customized connection details that are 3D printed directly onto off-the-shelf building members during their assembly process. Challenging the current fashion of highly predetermined joints in digital construction, detailing in place offers an adaptive fabrication method, enabling the expressive tailoring of connection details addressing its specific architectural conditions. In the present research, the in place detailing strategy is explored through robotic wire arc additive manufacturing (WAAM), a metal 3D printing technique based on MIG welding. The robotic WAAM process coupled with localization and path-planning strategies allows a local control of the detail geometry enabling the fabrication of customized welded connections that can compensate material and construction tolerances. The paper outlines the potential of 3D printing in place details, describes methods and techniques to realize them and shows experimental results that validate the approach.
keywords work in progress, fabrication & robotics, robotic production, materials/adaptive systems, architectural detailing
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id caadria2018_292
id caadria2018_292
authors Eid Mohamed, Basem, ElKaftangui, Mohamed and Zureikat, Rana
year 2018
title {In}Formed Panels - Towards Rethinking the Precast Concrete Industry in the UAE
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 287-296
doi https://doi.org/10.52842/conf.caadria.2018.1.287
summary The convergence of digital design and fabrication technologies have offered architects and designers the means by which to develop customized architectural artifacts, ones that goes beyond the standards of "one size fits all". Such applications have been applied extensively in various architectural practices, and specifically in the realm of industrialized building production, given that they present a suitable model. Although unrecognized within standard precast concrete production, current research acknowledges the need for advanced computer applications for shifting the industry into a digitized process. This paper represent a critical phase of an ongoing research endeavor that aims at rethinking the precast concrete production in the UAE, and MENA region for housing typologies. The project explores possibilities of a new protocol that is focused from design to production, relying on performative design strategies, and possible optimized for large format 3D printing of concrete elements. The aim is to develop an integrated façade panels system that is tailored for design and production; an approach that goes beyond current industry practices.
keywords Precast Concrete; Industrialized Construction; Evolutionary Design; Optimization
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2018_270
id caadria2018_270
authors Houda, Maryam and Reinhardt, Dagmar
year 2018
title Structural Optimisation for 3D Printing Bespoke Geometries
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 235-244
doi https://doi.org/10.52842/conf.caadria.2018.1.235
summary Current advances in 3D printing technology enable novel design explorations with the potential to inform printing deposition through generative scripting and structural performance analysis. This paper presents ongoing research that involves three scales of operation; a global geometry for multi-skin cellular mesh densities; localised skin-porosity detailing, and material structural optimisation. Centering on a chair as a test case scenario, the research explores the affordances of a serialised, multi-material 3D printing process in the context of digital instruction, customisation, and material efficiency. The paper discusses two case studies with consecutive optimisation, and outlines the benefits and limitations of 3D printing for structural optimisation and multi-material grading in the additive process.
keywords 3D Printing; Bespoke Complexity; Digital Instruction; Mass Customisation; Multi-Material Grading; Robotic Deposition; Structural Optimisation
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2018_302
id caadria2018_302
authors Lee, Alric, Tei, Hirokazu and Hotta, Kensuke
year 2018
title Body-Borne Assistive Robots for Human-Dependent Precision Construction - The Compensation of Human Imprecision in Navigating 3-Dimensional Space with a Stand-Alone, Adaptive Robotic System
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 545-554
doi https://doi.org/10.52842/conf.caadria.2018.1.545
summary The rapid growth of complex contemporary architecture design, contributed by the advance in parametric CAD/CAM software, is accompanied by challenges in the production process; it demands both highly trained workers and technical equipments. This paper reviews current technologies in robotics-aided construction and wearable computers for generic purposes, and proposes the design of a robotic device for construction guidance. It guides the user, the worker, through the assembly process of precision modular constructions, by providing procedural mechanical or haptic assistance in the 3-dimensional positioning of building components. The device is designed to be wearable, portable, and operable as a completely stand-alone system that requires no external infrastructure. A prototype of the device is tested with a mock-up masonry construction experiment, the result of which is reported in this paper, along with discussion for future improvement and application opportunities within the context of highly developed, condensed Japanese urban environments. A greater objective of this paper is to bridge current studies in Human-Computer Interaction (HCI) and digital fabrication in architecture and promote the potentials of human workers in future construction scenes.
keywords digital fabrication; human-computer interaction; 3d positioning; wearable robotics; guided construction
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2021_262
id caadria2021_262
authors Olthof, Owen, Globa, Anastasia and Stracchi, Paolo
year 2021
title SISTEMA NERVI - Sustainable Production of Optimised Floor Slabs Through Digital Fabrication
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 723-732
doi https://doi.org/10.52842/conf.caadria.2021.1.723
summary 'Sistema Nervi' (the Nervi System) invented by Pier Luigi Nervi greatly economised the production of complex concrete forms optimised in both material usage and structurally. However it did not translate well into other contexts due to labour and material considerations (Leslie, 2018). This paper explores novel methodologies of producing optimised floor slabs and concrete structures, using digital fabrication techniques, focusing on both labour economisation and sustainability principles. A module from the Australia Square lobby slab has been used as the set geometry and was reproduced using differing techniques of fabrication for a comparative study. The study was conducted at scale (1:20). The viability for production at full scale (1:1) for manufacturing is discussed. The assessment criteria for the tests are divided into four categories: Cost, Time, Performance, and Sustainability. 3D printing of PLA plastic and ceramic clay extrusion printing has been used to produce removable or degradable formworks. These technologies have been selected due to their current market availability and associated costs. This study hopes to introduce improved methodologies for producing optimized concrete forms, as well as the sustainability potentials of a degradable formwork such as ceramic clay. Both systems were ultimately able to produce workable formworks for optimised shapes and showed promise for reducing labour involved as well as presenting with material sustainability for discussion.
keywords Concrete formwork; Sustainability; Degradable formwork; Optimised concrete; Advanced fabrication
series CAADRIA
email
last changed 2022/06/07 08:00

_id cdrf2021_286
id cdrf2021_286
authors Yimeng Wei, Areti Markopoulou, Yuanshuang Zhu,Eduardo Chamorro Martin, and Nikol Kirova
year 2021
title Additive Manufacture of Cellulose Based Bio-Material on Architectural Scale
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_27
summary There are severe environmental and ecological issues once we evaluate the architecture industry with LCA (Life Cycle Assessment), such as emission of CO2 caused by necessary high temperature for producing cement and significant amounts of Construction Demolition Waste (CDW) in deteriorated and obsolete buildings. One of the ways to solve these problems is Bio-Material. CELLULOSE and CHITON is the 1st and 2nd abundant substance in nature (Duro-Royo, J.: Aguahoja_ProgrammableWater-based Biocomposites for Digital Design and Fabrication across Scales. MIT, pp. 1–3 (2019)), which means significantly potential for architectural dimension production. Meanwhile, renewability and biodegradability make it more conducive to the current problem of construction pollution. The purpose of this study is to explore Cellulose Based Biomaterial and bring it into architectural scale additive manufacture that engages with performance in the material development, with respect to time of solidification and control of shrinkage, as well as offering mechanical strength. At present, the experiments have proved the possibility of developing a cellulose-chitosan- based composite into 3D-Printing Construction Material (Sanandiya, N.D., Vijay, Y., Dimopoulou, M., Dritsas, S., Fernandez, J.G.: Large-scale additive manufacturing with bioinspired cellulosic materials. Sci. Rep. 8(1), 1–5 (2018)). Moreover, The research shows that the characteristics (Such as waterproof, bending, compression, tensile, transparency) of the composite can be enhanced by different additives (such as xanthan gum, paper fiber, flour), which means it can be customized into various architectural components based on Performance Directional Optimization. This solution has a positive effect on environmental impact reduction and is of great significance in putting the architectural construction industry into a more environment-friendly and smart state.
series cdrf
email
last changed 2022/09/29 07:53

_id ecaade2018_167
id ecaade2018_167
authors Anton, Ana and Abdelmahgoub, Ahmed
year 2018
title Ceramic Components - Computational Design for Bespoke Robotic 3D Printing on Curved Support
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 71-78
doi https://doi.org/10.52842/conf.ecaade.2018.2.071
summary Additive manufacturing enables the fabrication of affordable customisation of construction elements. This paper presents a computational design method developed for 3D printing of unique interlocking ceramic components, which assemble into segmented columns. The fabrication method is ceramic-paste extrusion, robotically placed on semi-cylindrical molds. Material system and fabrication setup contribute to the development of an integrated generative system which includes overall design, assembly logic and printing tool-path. By contextualizing clay extrusion and identifying challenges in bespoke tool-path generation, this paper discusses detailing opportunities in digital fabrication. Finally, it identifies future directions of research in extrusion-based printing.
keywords CAAD education; generative design; robotic 3D printing; clay extrusion; curved support
series eCAADe
email
last changed 2022/06/07 07:54

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id acadia18_328
id acadia18_328
authors Kladeftira, Marirena; Shammas, Demetris; Bernhard, Mathias; Dillenburger, Benjamin
year 2018
title Printing Whisper Dishes. Large-scale binder jetting for outdoor installations
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 328-335
doi https://doi.org/10.52842/conf.acadia.2018.328
summary This research explores the design opportunities of a novel fabrication process for large scale architectural installations suitable for outdoor weather conditions. High resolution, bespoke geometries are easily fabricated at no extra cost in a continuous system using Binder Jet printing technology. The material properties of sandstone are considered a design drive for producing structural paths according to a finite element analysis. Several post processing materials are tested for strengthening the final geometry and providing a water resistant solution. The process is tested in a large, 1:1 sound installation of a pair of acoustic mirrors. First, this paper describes the specific potential and challenges of Binder Jet printing for outdoor applications. It, then, outlines the design principles of the sound device, the acoustic mirror, and their integration into a digital model. Finally, the computational design strategy is described, including topology optimization to reduce the weight/material and the integration of functional details
keywords work in progress, 3d printing, form finding, digital fabrication, building technologies
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id acadia18_434
id acadia18_434
authors Meibodi, Mania Aghaei ; Jipa, Andrei; Giesecke, Rena; Shammas, Demetris; Bernhard, Mathias; Leschok, Matthias; Graser, Konrad; Dillenburger, Benjamin
year 2018
title Smart Slab. Computational design and digital fabrication of a lightweight concrete slab
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 434-443
doi https://doi.org/10.52842/conf.acadia.2018.434
summary This paper presents a computational design approach and novel digital fabrication method for an optimized lightweight concrete slab using a 3D-printed formwork. Smart Slab is the first concrete slab fabricated with a 3D-printed formwork. It is a lightweight concrete slab, displaying three-dimensional geometric differentiation on multiple scales. The optimization of slab systems can have a large impact on buildings: more compact slabs allow for more usable space within the same building volume, refined structural concepts allow for material reduction, and integrated prefabrication can reduce complexity on the construction site. Among the main challenges is that optimized slab geometries are difficult to fabricate in a conventional way because non-standard formworks are very costly. Novel digital fabrication methods such as additive manufacturing of concrete can provide a solution, but until now the material properties and the surface quality only allow for limited applications. The fabrication approach presented here therefore combines the geometric freedom of 3D binderjet printing of formworks with the structural performance of fiber reinforced concrete. Using 3D printing to fabricate sand formwork for concrete, enables the prefabrication of custom concrete slab elements with complex geometric features with great precision. In addition, space for building systems such as sprinklers and Lighting could be integrated in a compact way. The design of the slab is based on a holistic computational model which allows fast design optimization and adaptation, the integration of the planning of the building systems, and the coordination of the multiple fabrication processes involved with an export of all fabrication data. This paper describes the context, design drivers, and digital design process behind the Smart Slab, and then discusses the digital fabrication system used to produce it, focusing on the 3D-printed formwork. It shows that 3D printing is already an attractive alternative for custom formwork solutions, especially when strategically combined with other CNC fabrication methods. Note that smart slab is under construction and images of finished elements can be integrated within couple of weeks.
keywords full paper, digital fabrication, computation, generative design, hybrid practices
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id sigradi2018_1881
id sigradi2018_1881
authors Fernández González, Alberto; Ortega Gómez, Susana
year 2018
title Coastal Fog Tower – Design and Fabrication Process of a Vertical Fog Capture Device
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 732-736
summary The coastal fog-harvesting tower project is a proposal that seeks to develop a water capture system from the condensation of coastal fog and rain, in a vertical structure that allows greater efficiency in collecting ambient humidity versus current bi-dimensional horizontal systems. The water availability in our country has declined over the last decade, so innovative solutions are required to take advantage of our unique coastal water potential. Using digital and analogue design technologies has been possible to develop a highly replicable and adaptable structural solution that can bring an affordable answer to this problem.
keywords Fog-Tower; water, 3d-print, digital-fabrication
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_165
id ecaade2018_165
authors Fisher-Gewirtzman, Dafna and Bruchim, Elad
year 2018
title Considering Variant Movement Velocities on the 3D Dynamic Visibility Analysis (DVA) - Simulating the perception of urban users: pedestrians, cyclists and car drivers.
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 569-576
doi https://doi.org/10.52842/conf.ecaade.2018.2.569
summary The objective of this research project is to simulate and evaluate the effect of movement velocity and cognitive abilities on the visual perception of three groups of urban users: pedestrians, cyclists and car drivers.The simulation and analysis is based on the 3D Dynamic Visual Analysis (DVA) (Fisher-Gewirtzman, 2017). This visibility analysis model was developed in the Rhinoceros and Grasshopper software environments and is based on the conceptual model presented in Fisher-Gewirtzman (2016): a 3D Line of Sight (LOS) visibility analysis, taking into account the integrated effect of the 3D geometry of the environment and the variant elements of the view (such as the sky, trees and vegetation, buildings and building types, roads, water etc.). In this paper, the current advancement of the existing model considers the visual perception of human users employing three types of movement in the urban environment--pedestrians, cyclists and drivers--is explored.We expect this research project to exemplify the contribution of such a quantification and evaluation model to evaluating existing urban structures, and for supporting future human perception-based urban design processes.
keywords visibility analysis and simulation; predicting perception of space; movement in the urban environment; pedestrians; cyclists; car drivers
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2018_162
id caadria2018_162
authors Hawton, Dominic, Cooper-Wooley, Ben, Odolphi, Jorke, Doherty, Ben, Fabbri, Alessandra, Gardner, Nicole and Haeusler, M. Hank
year 2018
title Shared Immersive Environments for Parametric Model Manipulation - Evaluating a Workflow for Parametric Model Manipulation from Within Immersive Virtual Environments
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 483-492
doi https://doi.org/10.52842/conf.caadria.2018.1.483
summary Virtual reality (VR) and augmented reality (AR) provide designers with new visual mediums through which to communicate their designs. There is great potential for these mediums to positively augment current visual communication methods by improving remote collaboration. Enabling designers to interact with familiar computational tools through external virtual interfaces would allow them to both calibrate design parameters and visualise parametric outcomes from within the same immersive virtual environment. The current research outlines a workflow for parametric manipulation and mesh replication between immersive applications developed in the Unity game engine and McNeel's Grasshopper plugin. This paper serves as a foundation for future research into integrating design tools with external VR and AR applications in an effort of enhancing remote collaborative designs.
keywords Augmented Reality; Virtual Reality; Parametric Design; Procedural; Grasshopper
series CAADRIA
email
last changed 2022/06/07 07:49

_id ecaade2018_p02
id ecaade2018_p02
authors Kepczynska-Walczak, Anetta and Martens, Bob
year 2018
title Digital Heritage - Special Panel Session
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 39-44
doi https://doi.org/10.52842/conf.ecaade.2018.1.039
summary According to eCAADe's mission, the exchange and collaboration within the area of computer aided architectural design education and research, while respecting the pedagogical approaches in the different schools and countries, can be regarded as a core activity. The current session follows up on the first Contextualised Digital Heritage Workshop (CDHW) held on the occasion of eCAADe 2016 in Oulu (D. di Mascio et.al.) This event was thought to represent the first of a series of future contextualized digital heritage workshops and hence, the name Oulu interchangeable with the name of any other city or place. The second CDHW took place in the framework of CAADRIA 2017 in Suzhou (D. di Mascio & M.A. Schnabel) and focussed on sharing and dissemination of heritage information and personal experiences, such as narratives.The primary objective for the 2018 digital heritage session is to engage participants in an active discussion, not the longer format presentation of prepared positions. The round table itself is limited to short opening statements so as to ensure time is allowed for viewpoints to be exchanged and for the conference attendees to join in on the issues discussed. The panel will review past practices with the potential for guiding future direction.
keywords Digital technology; Built heritage; Virtual archeology
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2018_215
id ecaade2018_215
authors Mohite, Ashish, Kochneva, Mariia and Kotnik, Toni
year 2018
title Material Agency in CAM of Undesignable Textural Effects - The study of correlation between material properties and textural formation engendered by experimentation with G-code of 3D printer
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 293-300
doi https://doi.org/10.52842/conf.ecaade.2018.2.293
summary This paper presents intermediate results of an experimental research directed towards development of a method to use additive manufacturing technology as a generative agent in architectural design process. The primary technique is to variate speed of material deposition of a 3D printer in order to produce undetermined textural effects. These effects demonstrate local variation of material distribution, which is treated as a consequence of interaction between machining parameters and material properties. Current stage of inquiry is concerned with studying material agency by using two different materials as variables in the same experimental setup. The results suggest potential benefits for mass-customized fabrication and deeper understanding of how different materials can be employed in the same manufacturing system to achieve a range of effective behaviors.
keywords digital fabrication; digital craft
series eCAADe
email
last changed 2022/06/07 07:58

_id sigradi2018_1648
id sigradi2018_1648
authors Naboni, Roberto; Breseghello, Luca
year 2018
title Fused Deposition Modelling Formworks for Complex Concrete Constructions
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 700-707
summary Concrete is undoubtedly the most employed material in constructions. In principle it allows to build complex architecture, where form can be for the realization of complex shapes. However, the biggest limitation of its use is explained by the demanding process needed to create free-form casts, it often limits its potential to obvious geometries. With the aim of overcoming current limitations, this paper explores the use of additive manufacturing to create formworks for concrete elements. The case study of a complex column is here utilized in order to develop an approach for advanced molds, where pressure levels, fluid dynamics of concrete and disassembly are integrative part of the design process. In conclusion are presented recommendations for further development at larger scale.
keywords Digital concrete, Casting, Additive Manufacturing, Digital Fabrication, Construction Method
series SIGRADI
email
last changed 2021/03/28 19:59

_id acadia18_350
id acadia18_350
authors Seibold, Zach; Hinz, Kevin; García del Castillo y López, Jose Luis; Martínez Alonso, Nono; Mhatre, Saurabh; Bechthold, Martin
year 2018
title Ceramic Morphologies. Precision and control in paste-based additive manufacturing
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 350-357
doi https://doi.org/10.52842/conf.acadia.2018.350
summary Additive manufacturing techniques (AMT), commonly referred to as 3D printing, are emerging as a new area of study for the production of ceramic elements at the architectural scale. AMT may allow architectural designers to break from the established means of designing with ceramic elements – a process where designs are typically confined to a limited selection of building components produced by machine, die or fixture. In this paper, we report a method for the design and additive manufacture of customizable ceramic masonry elements via paste-based extrusion. A novel digital workflow allowed for precise control of part design, and generated manufacturing parameters such as toolpath geometry and machine code. 3D scans of a selection of elements provide an initial analysis of print fidelity. We discuss the current constraints of this process and identify several on-going research trajectories generated because of this research.
keywords work in progress, fabrication & robotics, materials/adaptive systems, digital fabrication, digital craft
series ACADIA
type paper
email
last changed 2022/06/07 07:59

_id caadria2018_001
id caadria2018_001
authors T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.)
year 2018
title CAADRIA 2018: Learning, Prototyping and Adapting, Volume 2
source Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, 610 p.
doi https://doi.org/10.52842/conf.caadria.2018.2
summary Rapidly evolving technologies are increasingly shaping our societies as well as our understanding of the discipline of architecture. Computational developments in fields such as machine learning and data mining enable the creation of learning networks that involve architects alongside algorithms in developing new understanding. Such networks are increasingly able to observe current social conditions, plan, decide, act on changing scenarios, learn from the consequences of their actions, and recognize patterns out of complex activity networks. While digital technologies have already enabled architecture to transcend static physical boxes, new challenges of the present and visions for the future continue to call for both innovative responses integrating emerging technologies into experimental architectural practice and their critical reflection. In this process, the capability of adapting to complex social and environmental challenges through learning, prototyping and verifying solution proposals in the context of rapidly shifting realities has become a core challenge to the architecture discipline. Supported by advancing technologies, architects and researchers are creating new frameworks for digital workflows that engage with new challenges in a variety of ways. Learning networks that recognize patterns from massive data, rapid prototyping systems that flexibly iterate innovative physical solutions, and adaptive design methods all contribute to a flexible and networked digital architecture that is able to learn from both past and present to evolve towards a promising vision of the future.
series CAADRIA
last changed 2022/06/07 07:49

_id caadria2018_000
id caadria2018_000
authors T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.)
year 2018
title CAADRIA 2018: Learning, Prototyping and Adapting, Volume 1
source Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, 578 p.
doi https://doi.org/10.52842/conf.caadria.2018.1
summary Rapidly evolving technologies are increasingly shaping our societies as well as our understanding of the discipline of architecture. Computational developments in fields such as machine learning and data mining enable the creation of learning networks that involve architects alongside algorithms in developing new understanding. Such networks are increasingly able to observe current social conditions, plan, decide, act on changing scenarios, learn from the consequences of their actions, and recognize patterns out of complex activity networks. While digital technologies have already enabled architecture to transcend static physical boxes, new challenges of the present and visions for the future continue to call for both innovative responses integrating emerging technologies into experimental architectural practice and their critical reflection. In this process, the capability of adapting to complex social and environmental challenges through learning, prototyping and verifying solution proposals in the context of rapidly shifting realities has become a core challenge to the architecture discipline. Supported by advancing technologies, architects and researchers are creating new frameworks for digital workflows that engage with new challenges in a variety of ways. Learning networks that recognize patterns from massive data, rapid prototyping systems that flexibly iterate innovative physical solutions, and adaptive design methods all contribute to a flexible and networked digital architecture that is able to learn from both past and present to evolve towards a promising vision of the future.
series CAADRIA
last changed 2022/06/07 07:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_462711 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002